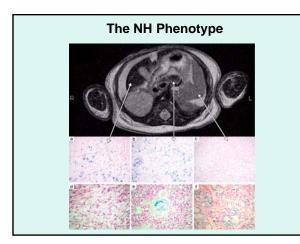
In the past 12 months, I have had no relevant financial relationships with the manufacturer(s) of any commercial product(s) and/or provider(s) of commercial services discussed in this CME activity.

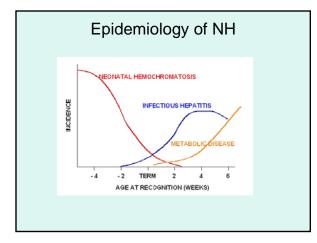
> Neonatal Liver Failure Lessons Learned

Peter F Whitington MD Lurie Children's Hospital of Chicago Feinberg Medical School of Northwestern University

Neonatal Liver Failure Results from the PALF study


NLF is a prominent player in PALF

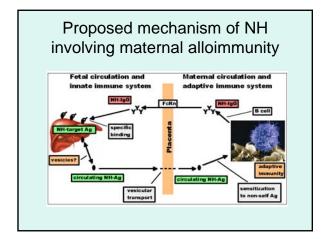
- 148/841 registrants were < 90 days of age
- Meaning 4% of the age spectrum contributed 17% of PALF patients


Etiology	Percent of NLF		
Metabolic disease	18.9		
Viral	16.2		
Neonatal hemochromatosis	13.5		
Other	12.8		
Indeterminate	37.8		

Neonatal Hemochromatosis

- Single diagnosis with highest prevalence in NLF
- Diagnosis requires demonstration of extrahepatic siderosis in association with severe neonatal liver disease
- NH is actually a phenotype, not a disease
- Strong evidence that the NH phenotype results from FETAL LIVER DISEASE

Contrasting clinical features of NH and viral infection in cases of neonatal liver failure

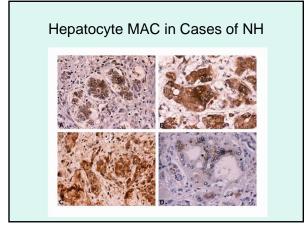

Premature birth Most (70-90%) Usal population incidence Olgohydramnios Most (70-90%) Exceedingly rare Intrauterine growth restriction Most (70-90%) Rare Acates Common (40-60%) Exceedingly rare - never Anaarca or hydropa Üncommon (10-20%) Exceedingly rare - never Patent dux venous Most (70-90%) Exceedingly rare - never Hepatomegaly Uncommon (10-20%) Exceedingly rare - never Splenomegaly Most weno papababe Exceedingly rare - never			
Intrauterine growth restriction Most (70-80%) Rare Ascles Common (40-80%) Exceedingly rare - never Anasarca or hydrops Uncommon (10-20%) Exceedingly rare - never Patent ductus venosus Most (70-90%) Exceedingly rare - never Hepatomegaly Uncommon (10-20%) Common Hard Iver Alwsy when pagable Exceedingly rare - never	Premature birth	Most (70-90%)	Usual population incidence
Asoles Common (40-80%) Exceedingly rare - never Anasarca or hydrops Uncommon (10-20%) Exceedingly rare - never Patent ductus venosus Most (70-90%) Exceedingly rare - never Hepstomegaly Uncommon (10-20%) Common Hard Iver Always when pagable Exceedingly rare - never	Oligohydramnios	Most (70-90%)	Exceedingly rare
Anasarca or hydrops Uncommon (10-20%) Exceedingly rare - never Patent ductus venosus Most (70-90%) Exceedingly rare - never Hepstomegaly Uncommon (10-20%) Common Hard Iver Alwsys when pagable Exceedingly rare - never	Intrauterine growth restriction	Most (70-90%)	Rare
Patent ductus venosus Most (70-90%) Exceedingly rare - never Hepatomegaly Uncommon (10-20%) Common Hard liver Always when papable Exceedingly rare - never	Ascites	Common (40-60%)	Exceedingly rare - never
Hepatomegaly Uncommon (10-20%) Common Hard liver Always when papable Exceedingly rare - never	Anasarca or hydrops	Uncommon (10-20%)	Exceedingly rare - never
Hard liver Always when palpable Exceedingly rare - never	Patent ductus venosus	Most (70-90%)	Exceedingly rare - never
	Hepatomegaly	Uncommon (10-20%)	Common
Splenomegaly Uncommon (10-20%) Common though often mild	Hard liver	Always when palpable	Exceedingly rare - never
	Splenomegaly	Uncommon (10-20%)	Common though often mild

Lessons learned From clinical observation

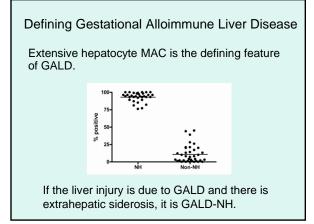
- NLF is a big part of PALF
- Not all NLF is NALF
- Birth is an ambiguous dividing line in the continuum of fetal-neonatal liver disease
- Some of NLF is the extension of fetal liver disease – NH is the prototype for this paradigm

Theorem: Gestational Alloimmune Liver Disease is the cause of NH

- NH is congenital and familial but not inheritable.
 The apparent recurrence rate of lethal disease after the
 - The apparent recurrence rate of lethal disease after the index case is as high as 92%
 Many women have had several normal babies prior to the
 - Many women have had several normal babies prior to the index case
 Conversion of women having affected affection
 - Several instances of women having affected offspring with different fathers
 - No sisters of affected women ever reported to have a baby with NH
- Offspring of women who survived NH are unaffected
 In the universe of known causes of fetal liver injury only gestational alloimmune disease can explain the phenomenon of NH



NH alloantibodies produce fetal liver injury via engagement of the fetus' innate immune system


- · IgG binds to cell surface antigens
- Fetal complement is fixed leading to classical pathway activation of the terminal complement cascade
- Hepatocyte plasma membrane injury and cell death result from MAC-attack

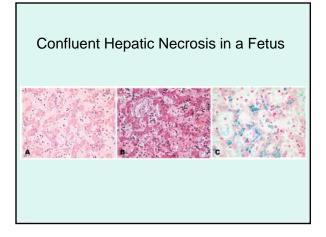
Assessing Complement-Mediated Injury in Human Tissues

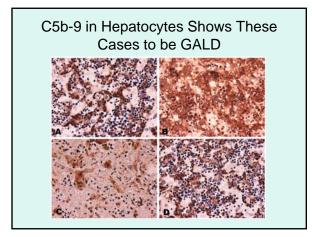
- In assembly of MAC a stable complex is formed comprising the complement elements C5b through 9
- The C5b-9 complex is a neoantigen that has been isolated and antibodies raised against it
- Specific anti-C5b-9 antibodies do not bind to any of the complement elements, only to the neoantigen
- Finding C5b-9 complex on or in a cell provides indisputable evidence that MAC has been assembled on the cell surface

Atypical GALD scenarios

- Fetal death
- Unexplained death in the newborn
- Acute liver failure

GALD as a cause of fetal acute liver failure

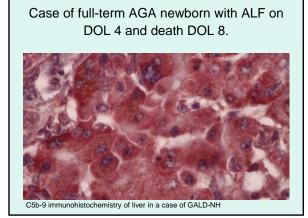

- Fetal liver failure has never been described or parameters for diagnosis defined
- IUFD must define "failure" as other measures of liver function are unavailable
- Conventional diagnosis of NH may not apply as siderosis is a secondary and perhaps late event


GALD-Associated Abrupt Fetal Demise

Eight cases with no fetal distress or other evidence of chronic or subacute liver disease

Case #	Gest age (weeks)	Birth Status	Sibling with NH	Extrahepatic Siderosis
1	22	live birth	yes	no
2	22	stillbirth	no	no
3	34	stillbirth	no	yes
4	30	live birth	yes	yes
5	22	stillbirth	no	yes
6	20	stillbirth	no	yes
7	20	stillbirth	no	no
8	21	stillbirth	no	yes

Stillbirth: Intrauterine fetal demise


- Late IUFD defined as loss in second half of pregnancy
- Affects ~1 in 150 pregnancies in the US
- Cause generally not determined
 Chromosomal defects in ~10%
 - Hypercoagulable states may cause ~7%
- Approximately 20% of pregnancies with IUFD will recur

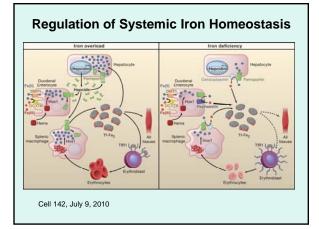
What about GALD as a cause of IUFD?

- Women with a baby affected by NH have a rate of late IUFD far in excess of normal – one in seven pregnancies ended in fetal loss between 16 weeks and term
- Re-examination of stillbirth autopsies has resulted in numerous GALD and/or NH diagnoses
- Case control study needed to determine if GALD is a common cause of IUFD
- If GALD causes 10% of IUFD, it would be 10-times more prevalent than biliary atresia as a cause of fetal-infant morbidity/mortality

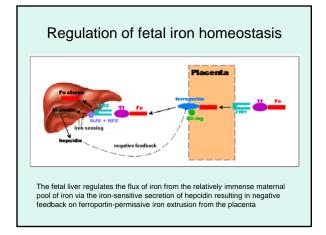
GALD in obscure neonatal death

- 16-year autopsy study; death by 90 days of age
- 7 cases identified with "obscure" cause of death
 - Final pathological diagnoses: anasarca or hydrops in 4 and hemorrhagic diathesis in 3
 - Liver pathology reported as post-mortem change
- Siderosis negative in 6
- C5b-9 stain 4+ positive in all cases

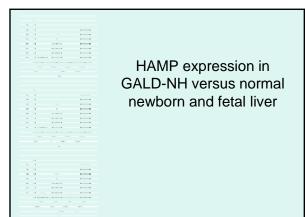
Lessons learned


Exploring mechanisms of fetal liver injury

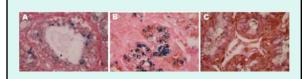
Gestational alloimmune liver disease


- It happens
- First known "pure" antibody mediated liver disease
- Cause of acute liver failure in fetuses and newborns
- Cause of typical NH with "congenital cirrhosis"
- Mechanism has led to prevention and improved medical therapy
- Mechanism opens new vistas for further improvement in detection and therapy

Where does the iron come from?


- From the mother of course
- How is regulation of maternal-fetal iron flux disturbed?
- Why the specific tissue distribution of siderosis?

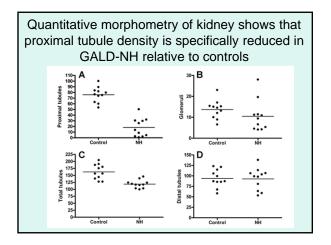
Normal newborn iron transporter expression


	TfR2	DMT1	Zip14	Ferroportin
Hepatocytes	+++	+	+++	+++
Pancreatic acinar cells	-	-	+++	+
Thyroid follicle epithelia	-	-	+++	-
Hassall's corpuscles	-	+	+++	-
Myocardium	-	-	++	++
Adrenal cortex	+	-	+++	++
Renal tubular epithelium	+	-	++	++
Respiratory epithelium	++	-	+++	+++
Small intestinal epithelium	++	+	+ - +++	+++
Spleen pulp	+++	-	+	+++

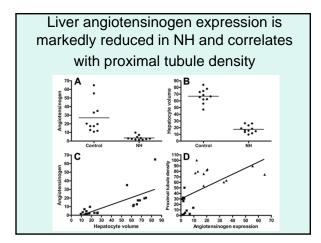
Relationship between siderosis and iron transporter expression in GALD-NH

	Siderosis	Zip14	Ferroportin
Pancreatic acinar cells	++	+++	+
Thyroid follicle epithelia	++	++	-
Hassall's corpuscles	++	++	+
Myocardium	+	++	++
Adrenal cortex	+	++	+
Renal tubular epithelium	+	+	+
Submucosal salivary glands	++	+++	-

Colocalization of ZIP14 expression and siderosis in GALD-NH


A = thyroid B = exocrine pancreas C = minor salivary gland

Mechanism of iron overload and tissue siderosis in NH


- Severe fetal liver disease no matter the cause may result in low HAMP expression
- Hepcidin deficiency leads to unrestricted placental iron flux and iron overload
- Iron overload with or without low transferrin leads to excess NTBI
- Cells capable of taking up NTBI via ZIP14 and incapable of eliminating iron via ferroportin develop siderosis

Renal proximal tubular dysplasia in NH

- Must be more than coincidence
- Hypothesis: renal tubular dysplasia is a consequence of fetal liver injury as is NH
- Development of proximal tubules is dependent upon angiotensinogen
- Angiotensinogen is produced entirely by the liver
- Can we show that GALD produces angiotensinogen deficiency and thus impairs proximal tubule development?

Mechanism renal proximal tubular dysplasia in GALD-NH

- Low angiotensinogen expression correlates with severity of fetal liver injury
- Angiotensinogen deficiency impairs development of proximal tubules
- Severe impairment of developmental process may lead to critically reduced density of proximal tubules
- The condition called renal proximal tubular dysplasia is just the tip of the iceberg

Lessons learned

Exploring mechanisms of epiphenomena

- Iron overload is a symptom of fetal liver disease
 - HAMP/hepcidin deficiency leads to iron overload
 - Classification of NH among the hereditary hemochromatosis disorders is incorrect
 - Iron probably plays no role in tissue injury in NH
- Fetal liver injury affects renal development – Angiotensinogen deficiency is the cause

Remaining questions Many careers worth

- Those we are currently exploring
 - What mechanisms lead to fibrosis without inflammation
 - What is the fetal liver antigen
 - What it is the mechanism of maternal sensitization and what determines its frequency with which it occurs

Acknowledgements

- Sue Kelly clinical research coordinator
- Padmini Malladi research scientist
- Xiaomin Pan senior technician
- Silvana Bonilla, Josh Prozialeck and Aki Asai – fellows
- The families of children with NH and physicians everywhere caring for them