Correlation Between Intraluminal Oxygen Gradient and Radial Partitioning of Intestinal Microbiota

Lindsey Albenberg, DO
The Children’s Hospital of Philadelphia
The University of Pennsylvania

Dysbiosis in Inflammatory Bowel Disease (IBD)

- Increases in Proteobacteria and Actinobacteria
 - Generally aerotolerant
 - Better able to manage oxidative stress in the setting of inflammation?
- Host inflammatory response leads to production of oxidation products which serve as electron acceptors supporting anaerobic respiration by facultative anaerobes (Winter et al. *EMBO Reports*, 2013.)

The Anaerobic Intestinal Lumen

- The intestinal lumen in humans is thought to be strictly anaerobic, but the reason for this largely unknown
- Current technology is unable to dynamically quantify oxygen in the intestinal tract, so the mechanisms that maintain this anaerobic environment remain unclear
Oxygen Gradient

Biopsy and Stool Communities Cluster Separately Independent of Individual, Diet, and Time

CAFE Study Days 1 and 10 (Stool and Biopsy Samples)

- 10 healthy volunteers
- Randomized to high fat vs. low fat diet
- 10 day inpatient stay
- Daily stool sample collection
- Biopsy specimens obtained on day 1 and day 10 (un-prepped flexible sigmoidoscopy)

Unweighted Unifrac

Wu et al. Science 2011;334:105-8

CAFE biopsy vs. stool analysis

Hypothesis: Bacteria adherent to the rectal mucosa is enriched in aerotolerant bacteria relative to the feces where most organisms are obligate anaerobes.

Classify the genera based on oxygen preference

- Focus on 73 bacterial genera with maximum proportion > 0.002
- Classify each genus as either "facultative anaerobe or aerotolerant", "aerobe or microaerophile" or "obligate anaerobe"
- Two groups
 - Obligate anaerobe
 - All others
- Classify the genera into Stool or Biopsy-dominant
Enrichment of "Aerotolerant" Catalase Positive Bacteria on the Rectal Mucosa

- p=0.002
- p=0.004

Phosphorescence Quenching: A form of Biological Oximetry

Phosphorescent Nanoprobe Oxyphor G4

- Non-toxic
- Does not interact with the environment
- Does not cross biologic membranes
- Unlimited water solubility

Methods: Phosphorescence Quenching

G4 excitation: λ\text{exc} = 635 nm
G4 detection: λ\text{det} = 810 nm
Oxygenation of the Host and in the Gut Lumen

Bacterial Taxonomy in Human Stool is Different from Either Rectal Biopsies or Swabs

The Mucosally-Associated Microbiota in Humans
The Assacharolytic and Oxygen Tolerance Bacterial Signature at the Mucosal Interface

Rectal Biopsy/Swab Specific Taxa
- Murdocchiella (Firmicute)
- Finegoldia (Firmicute)
- Anaerococcus (Firmicute)
- Peptoniphilus (Firmicute)
- Porphyromonas (Bacteroidetes)
- Campylobacter (Proteobacteria)
- Propionibacterium (Actinobacteria)
- Corynebacterium (Actinobacteria)
- Enterobacteriaceae (Proteobacteria)

Spatial Segregation of the Intestinal Microbiota at the Mucosal Interface

- Using phosphorescence quenching, we confirm the oxygen-poor environment of the gut lumen
- Composition of the gut microbiota is spatially-segregated along the radial axis of the gut
- The intestinal mucosal surface is enriched for oxygen tolerant organisms that may serve as “founding” communities for the development of the dysbiotic microbiota associated with intestinal inflammation
- By comparing the microbiota in rectal biopsies and swabs to the feces, we also show that a consortium of asaccharolytic bacteria that primarily metabolize amino acids are associated with mucus.

Dr. Gary D. Wu
Bob Baldassano

The Wu Lab
Lillian Chau
Christel Chehoud
Ying-Yu Chen
Colleen Judge
Sue Kelbaugh
Judith Kelsen
Andrew Lin
Helen Pauly-Hubbard
David Shen
Mike Sheng
Sarah Smith
Rick Bushman and the Bushman lab:
- Stephanie Grunberg
- Kyle Bittinger
- Rohini Sinha

Thank You

Sergei Vinogradov
Tatiana Esipova
Jim Lewis
Hongzhe Li
Jun Chen

Support:
NASPGHAN Fellow to Faculty Transition Award in IBD Research

Thank You