

Learning Objectives

- Review what is known about the etiology of statural growth impairment and sex differences in statural growth impairment in pediatric Crohn's disease
- Illustrate the importance of utilizing bone age in interpreting statural growth in pediatric Crohn's disease
- Strategize next steps to improve our understanding of the underlying mechanisms of statural growth impairment in pediatric Crohn's disease in order to optimize management

Outline

- Background
- Multicenter Growth Study
- Future Directions

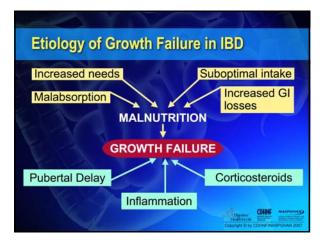
Background:

Growth Impairment

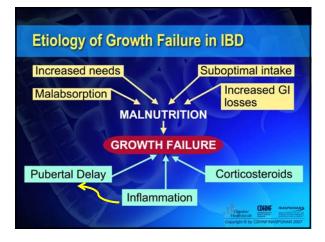
Commonly Used Definitions of Growth Impairment

- Height below the 3rd-5th percentile
- Decrease in height velocity below the $3^{\rm rd_{-}}$ $5^{\rm th}$ percentile
- · Fall off the child's growth curve

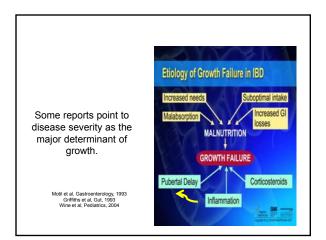
Prevalence	
Negative height Z score	72%
Height Z score < -1.64	23%
Decreased height velocity prior to diagnosis	88%
Reduction in height velocity before intestinal symptoms	42%
Height velocity < 4 cm/year	24%
	, Gastroenterology, 1988 Gastroenterology, 1993

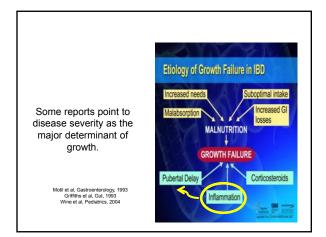

NIH/NIDDK's Opportunities & Challenges in Digestive Diseases Research: Research Objectives

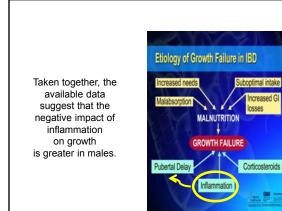
- Ameliorate or prevent adverse effects of IBD on growth and development in children and adolescents
- Define the mechanisms that produce growth delay in pediatric IBD patients
- Identify approaches that enable normal growth and development within the context of pediatric IBD

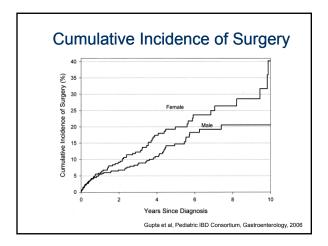

National Commission on Digestive Diseases, 2009

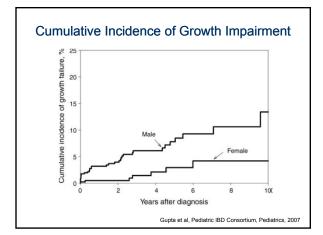
Etiologies of Statural Growth Impairment in Pediatric Crohn's Disease


What We Know



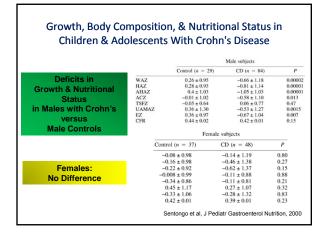




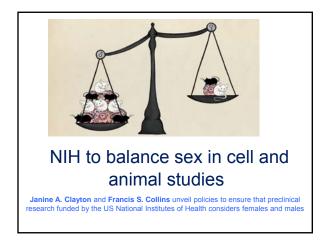


Sex Differences in Statural Growth Impairment in Crohn's Disease

What We Know

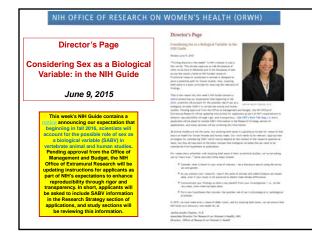


Grow	th of Childre	n with Crohn'	s disease				
Sex	Initial Height Z Score	Ultimate Height Z Score	Changes in Height Z Scores				
Female (N=25)	-1.01 (1.06)	-0.48 (0.91)	0.66 (1.27)				
Male (N=42)	-1.22 (1.30)	-1.02 (1.19)	0.16 (0.90)				
	P=0.02						
			Griffiths et al, Gut, 1993				

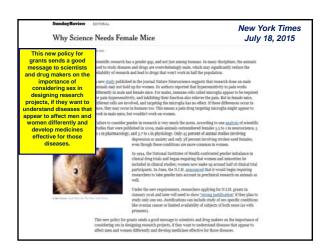


Nutr		& Growth in Pedi Population-Based				
Sex	Differences in	Ht Z Score at Maxir	nal Follow-Up			
	Sex	Height Z Score	P Value			
	Males (N=156)	-0.43	0.0002			
	Females (N=105)	-0.04				
	Vasseur et al, Am J Gastroenterol, 2010					

hildhood-	Final Ad vs Adult-	lult Height Onset Cro	
Sex	Childhood- Onset CD (N = 206)	Adult- Onset CD (N = 412)	P-Value
Males	172.8 ± 7.4	176.4 ± 6.5	<0.001
Females	162.2 ± 5.9	163.1 ± 6.0	NS
Total	167.9 ± 8.6	170.3 ± 9.1	<0.001



NIH Takes Steps to Address Sex Differences in Preclinical Research


May 14, 2014

Over the past two decades, we have learned a great deal about how men and women respond differently to medications. This knowledge came after a concerted effort in the early '90s to increase the number of women in NIH-funded clinical research. Today, just over half of NIHfunded clinical research participants are women. Unfortunately, experimental design in cell and animal research has not always followed suit. An over-reliance on male animals, and neglect of attention to the sex of cells, can lead to neglect of key sex differences that should be guiding clinical studies, and ultimately, clinical practice. NIH is taking action to address this shortfall as outlined by Janine A. Clayton, M.D., Director of the NIH Office of Research on Women's Health, and me in the *Nature* Comment below.

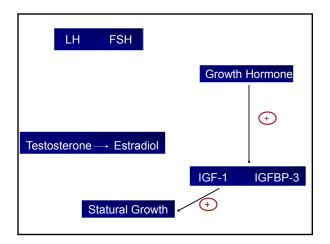
Francis S. Collins, M.D., Ph.D. Director, National Institutes of Health

Male-Female Dichotomy in Risk for Developing Statural Growth Impairment

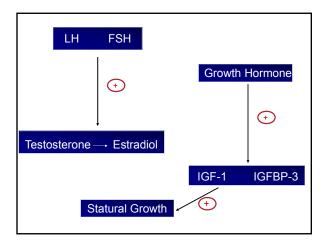
Male-Female Dichotomy in Risk for Developing Statural Growth Impairment

Window for furthering our understanding of the effects of inflammation on growth in *both sexes*

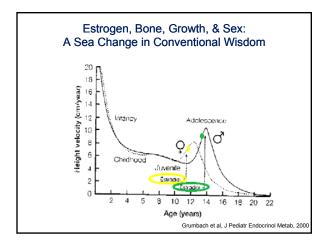
Major Endocrinologic Regulators of Statural Growth

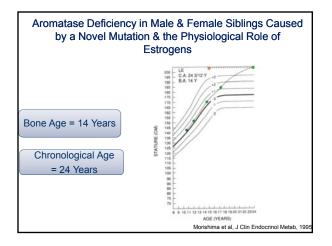

- Growth Hormone/Insulin-Like Growth Factor-1 Axis
- Hypothalamic-Pituitary-Gonadal Axis

	LH	FSH		Growth	Hormone
Testo	sterone	→ Estradiol			
				IGF-1	IGFBP-3
	S	tatural Growt	h		

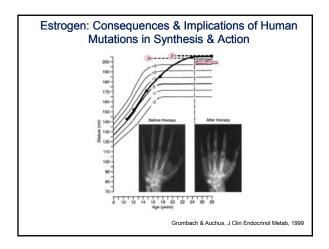


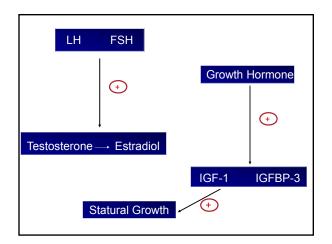
LH	FSH		
		Growth	Hormone
			(+)
Testosterone \rightarrow	Estradiol		
		IGF-1	IGFBP-3
State	ural Growth		

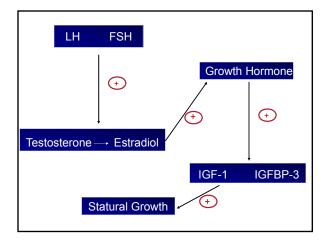


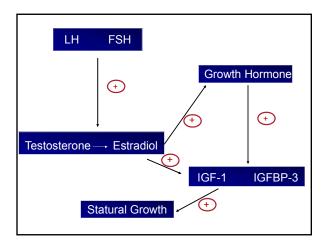


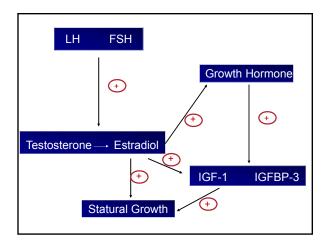


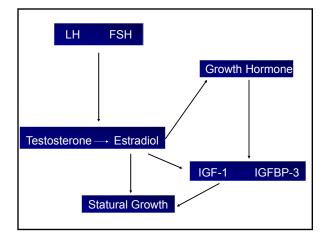


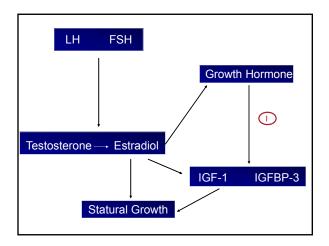


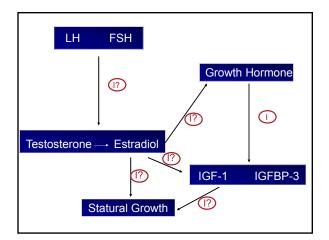












Inflammatory Bowel Diseases o

Official Journal of the Crohn's & Colitis Foundation of America, Inc

ORIGINAL ARTICLE

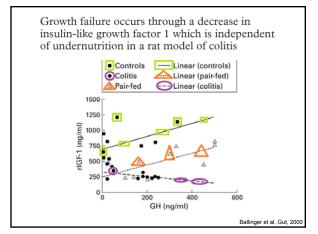
Sex Differences in Statural Growth Impairment in Crohn's Disease: Role of IGF-I

Neera Gupta, MD, MAS,* Robert H. Lustig, MD,* Michael A. Kohn, MD, MPP,[†] Marjorie McCracken, MD, PhD,[‡] and Eric Vittinghoff, MPhil, MPH, PhD[†]

Hypotheses

- Primary:
 - IGF-1 levels are lower in males compared with females with Crohn's disease
- Secondary:
 - Inflammatory markers predict IGF-1 levels in patients with Crohn's disease

		IGF-1	Z Scores		
Z Score	Female	Male	Sex Difference*	95% CI	Р
CA-Z (N=82)	-0.97± 1.08 (-2.87, 0.97)	-1.46 ± 1.10 (-3.61, 0.94)	-0.50	-0.99, -0.02	.04
BA-Z (N=49)	-0.12 ± 1.49 (-2.73, 2.74)	-1.26 ± 1.16 (-3.23, 0.94)	-1.24	-2.03, -0.45	.00



Z Score		IGFBP-3	Z Scores		
-	Female	Male	Sex Difference*	95% CI	P Val
CA-Z (N=82)	-0.25 ± 1.11 (-1.79, 2.50)	-0.95 ± 1.06 (-3.08, 1.73)	-0.71	-1.19, -0.23	.004
BA-Z (N=49)	0.27 ± 1.34 (-1.18, 3.44)	-0.98 ± 0.73 (-2.37, 1.03)	-1.26	-1.87, -0.65	<.00

Marker	ESR		CRP		Albumin		BMI Z	
Outcome	ΔR^2	P Val						
IGF-1 CA- Z	10.0	.002	17.1	.0001	6.7	.01	10.7	.007
IGF-1 BA-Z	9.1	.02	13.7	.003	19.5	.001	3.2	.16
IGFBP-3 CA- Z	5.5	.07	3.5	.07	0.2	.65	0.2	.67
IGFBP-3 BA-Z	5.6	.14	3.6	.11	0.0	.95	0.2	.70

Inflan	nflammatory Markers Correlate with Hormone Levels in Males							Males
		Femal	e			Male		
	Estradiol Z (CA)	Estradiol Z (BA)	FSH Z (CA)	FSH Z (BA)	Testosterone Z (CA)	Testosterone Z (BA)	LH Z (CA)	LH Z (BA)
ESR	-0.06* (.73)**	13 (.63)	-0.11 (.52)	-0.28 (.28)	-0.35	-0.49	-0.27 (.06)	-0.53
CRP	-0.12 (.50)	0.07 (.80)	-0.08 (.64)	-0.06 (.82)	-0.31	-0.38	-0.12 (.43)	-0.52
Alb	0.18 (.29)	0.23 (.38)	0.20 (.25)	0.20 (.43)	0.40	0.48	0.26 (.07)	0.51
* ••							1	1

Delayed Puberty and Response to Testosterone in a Rat Model of Colitis

- · Colitic versus normal rats
 - Testosterone reduced in colitic males

Azooz et al, Am J Physiol Regul Integr Comp Physiol, 2001

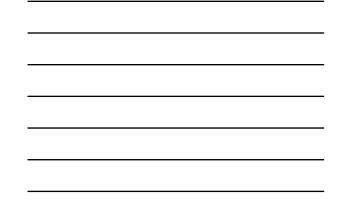
• No difference in estradiol levels in colitic vs normal females

INFLAMMATORY BOWEL DISEASES Official Journal of the Crohn's & Colitis Foundation of America, Inc ORIGINAL ARTICLE

Determination of Bone Age in Pediatric Patients with Crohn's Disease Should Become Part of Routine Care

Neera Gupta, MD, MAS,* Robert H. Lustig, MD,* Michael A. Kohn, MD, MPP,[†] and Eric Vittinghoff, PhD[†]

Results


- Mean BA-Z score= -1.4 \pm 1.5 (std dev)
- BA-Z score < -2 in 41%
- Lower BA-Z scores in females (p=.02)

Chronologic Age vs Bone Age
for Interpretation of Growth

TABLE 3. Comparison between Chronological Ageand Bone Age for Interpretation of Growth

Growth Parameter	Z Score Difference*	95% CI	P-value
Height	0.73	0.45 to 1.01	< 0.0001
Weight	0.51	0.29 to 0.74	< 0.0001
BMI	0.23	0.13 to 0.33	< 0.0001

*Z score difference = growth parameter BA-Z score minus growth parameter CA-Z score.

Chronologic Age vs Bone Age for Interpretation of Growth

 $\ensuremath{\mathsf{TABLE}}$ 3. Comparison between Chronological Age and Bone Age for Interpretation of Growth

Growth Parameter	Z Score Difference*	95% CI	P-value
Height	0.73	0.45 to 1.01	< 0.0001
Weight	0.51	0.29 to 0.74	< 0.0001
BMI	0.23	0.13 to 0.33	< 0.0001

CA-Z Score	CA- Percentile	BA-Z score	BA- Percentile
-2	2.3%	-1.27	10.2%
-1	15.9%	-0.27	39.4%

for Inte	CA- Percentile	ON Of Gr	OWth) BA- Percentile
-2	(2.3%)	-1.27	10.2%
-1	15.9%	-0.27	39.4%



Percentil	e Differe	ence (CA	A vs BA
for Inte	rpretatio	on of Gr	owth)
			,
CA-Z Score	CA-	BA-Z score	BA-

	CA- Percentile	BA-Z score	BA- Percentile
-2	2.3%	-1.27	10.2%
-1	15.9%	-0.27	39.4%

CA-Z Score	CA- Percentile	BA-Z score	BA- Percentile
-2	2.3%	-1.27	10.2%
-1	15.9%	-0.27	39.4%

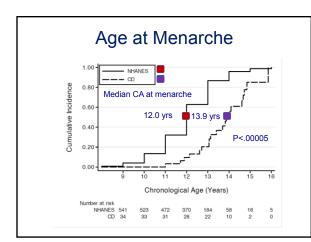
CA-Z Score	CA- Percentile	BA-Z score	BA- Percentil
-2	2.3%	-1.27	10.2%
-1	15.9%	-0.27	39.4%

Percentile Difference (CA vs BA
for Interpretation of Growth)

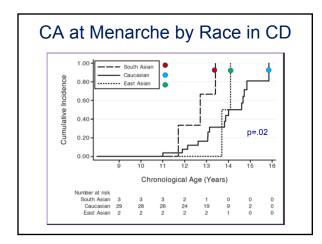
CA-Z Score	CA- Percentile	BA-Z score	BA- Percentile
-2	2.3%	-1.27	10.2%
-1	15.9%	-0.27	39.4%

Take-Home Message

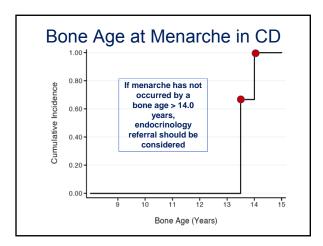
Bone age measurements allow clinically meaningful interpretation of statural growth —a dynamic marker of disease status


Weill Cornell Medical Colle

Digestive Diseases and Sciences


ORIGINAL ARTICLE

Menarche in Pediatric Patients with Crohn's Disease


Veera Gupta • Robert H. Lustig • Michael A. Kohn • Eric Vittinghoff

Additional Background

 Sex differences in inflammatory cytokine expression have been reported in hepatic ischemia, multiple sclerosis, and sepsis

Mizokami et al, J Urol 2000; Hong et al, Mol Cell Biol, 2004

• *In vitro* models suggest that inflammatory cytokines (TNF-α) reduce testosterone

Crockett et al, J Inflamm , 2006; Nguyen et al, J Neurol Sci 2003; Schroder et al, Arch Surg 1998

· Reduced androgen levels in males with CF, JIA, SLE

Boas et al, Pediatrics, 1996; Khalkhali-Ellis et al, Clin Exp Rheumatol 1998; Athreya et al, J Rheumatol 1993; Carrabba et al, Clin Rheumatol, 1985

Additional Background

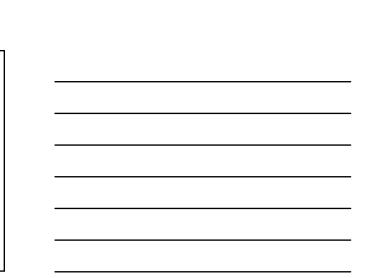
- Growth impairment is a common complication of many chronic inflammatory diseases
- Crohn's disease model for studying effects of inflammation on statural growth

Purpose

· Improve our understanding of mechanisms

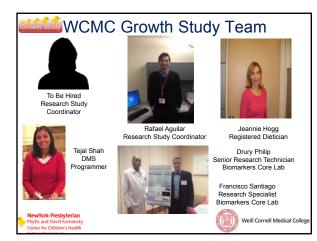
Develop new targeted medical treatment strategies to improve height velocity and final

>Optimize current treatment approaches in

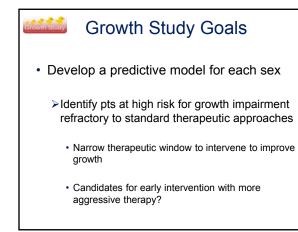

awain Suno

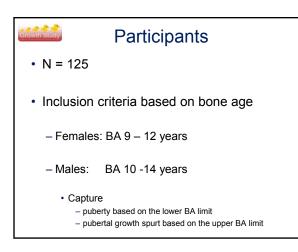
of growth impairment

adult height


high risk patients

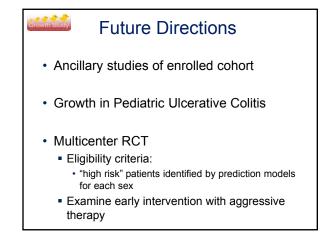
· Identify high risk patients




Growth Study Goals

- Determine sex differences in the longitudinal impact of inflammation on
 - GH/IGF-1 axis
 - Hypothalamic-pituitary-gonadal axis
 - Height velocity
 - Most sensitive parameter for detecting impaired statural growth

Growth Study Goals


- Determine whether sex differences in the inflammatory cytokine profile exist
 - TNF-α
 - IL-1β
 - IL-6
 - IL-1RA
 - Explain the apparent sexual dimorphism in the impact of inflammation on growth?

Timeline	-3 Months	Zero	6 Months	12 Months	18 Months	24 Months
Key Study Procedures	Routine Visit (Screening)	Study Visit 1	Study Visit 2	Study Visit 3	Study Visit 4	Study Visit
Bone Age	•			•		•
Medical History	•	•	•	•	•	•
Clinical & Self- Tanner Exam	•	•	•	•	•	•
Wt/Ht	•	•	•	•	•	•
Nutrient Intake Assessment		•		•		•
Blood Draw		•	•	•	•	•

Growth Center for Children with Chronic Inflammatory Diseases (GCC-CID's)

- Multidisciplinary patient care and research center
 - Improve our understanding of the impact of inflammation on statural growth
 - Optimize treatment strategies

Take Home Messages

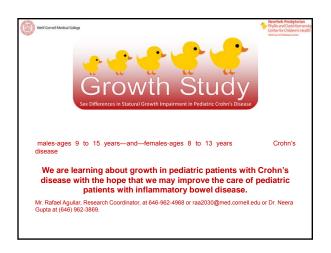
- Active inflammation may contribute to growth impairment in a patient who appears clinically well (no intestinal symptoms)
- Consider skeletal maturation and pubertal status in the interpretation of statural growth
- Statural growth should help guide therapeutic decisions
- · Consider effects of sex on outcomes

Take Home Messages

- Inform patients of opportunities to participate in research studies
- Collaborate—team science is essential
- Evidence-based medicine should drive our clinical care

Research Funding

- NICHD R01 075929
- NIDDK K23 077734
- CDHNF (NASPGHAN Foundation)/CCFA Award for New Investigators
- CCFA Career Development Award



Growth Impairment Definitions for Our Study

- Height Velocity Z Score < -1.66
- Change in Height Velocity Z score of -0.5 from the screening visit
- Height Z Score < -1.66

Z Scores Based on Bone Age

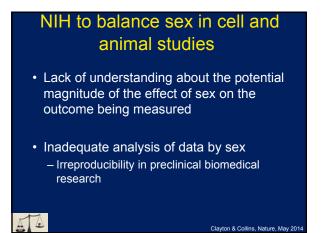
Definition of "High Risk" for Our Study

- Patients who meet the definition of growth impairment despite standard treatment approaches
- Establish prediction model separately for each sex
 - well-known sex differences in growth impairment

NIH to balance sex in cell and animal studies

- Just over half of NIH-funded clinicalresearch participants are women
- Example of importance of studying both sexes in clinical research:
 - Medications have
 - different preventive effects in women and men
 - different optimal dosing in women and men
 - higher rates of adverse reactions in women

Clayton & Collins, Nature, May 2014


Clayton & Collins, Nature, May 2014

NIH to balance sex in cell and animal studies

- Over-reliance on male animals and cells in pre-clinical research
- Obscures key sex differences that could help guide clinical studies

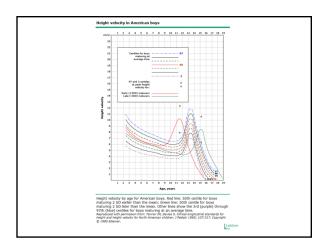
AA

J.A

NIH to balance sex in cell and animal studies

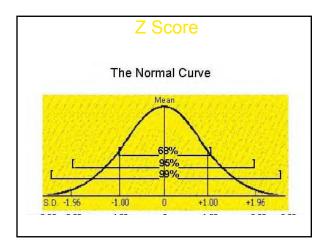
 NIH developing policies requiring reporting of plans to balance male and female cells and animals in preclinical studies

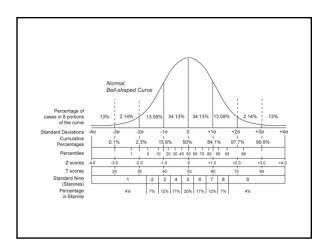
Clayton & Collins, Nature, May 2014

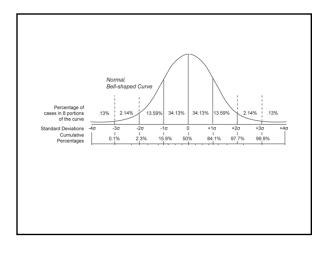

 Policies will be rolled out in phases beginning October 2014

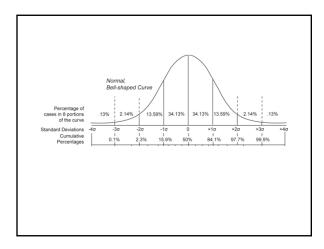
AA

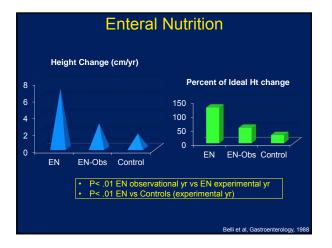

NIH Proceeds with Caution in Sex Balance on Biomedical Studies

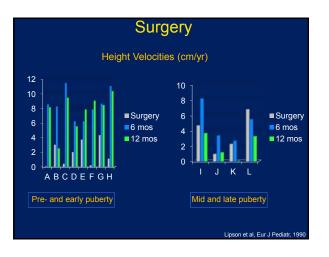

- Funding rules have not yet changed
- NIH is gathering comments from researchers
 - Which research areas need sex balance the most
 What challenges scientists face in including male and female subjects in their studies
- The NIH is also making videos and online tutorials to teach scientists who are new to studying both sexes how to design such studies
- Details about the policy and implementation plans are expected to roll out during the next year



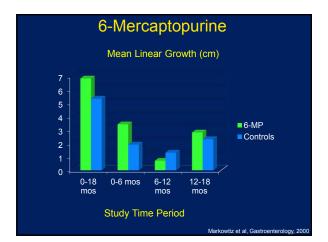


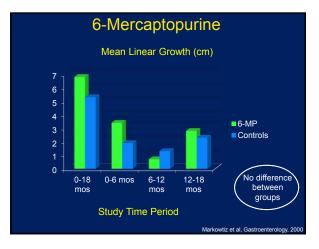


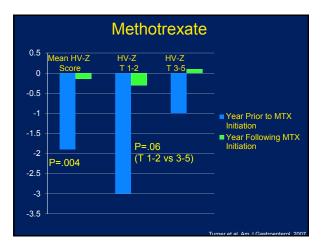


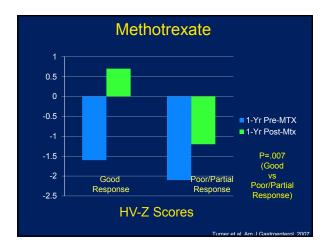


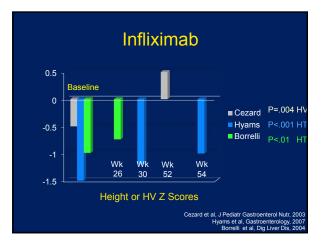
Monitoring

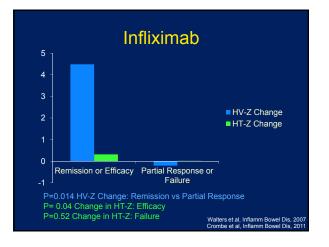

- Biologic parental ht for calculation of target ht
 - Females: [Mother's Ht (cm) + Father's Ht (cm) 13]/2
 - Males: [Mother's Ht (cm) + Father's Ht (cm) + 13]/2
 - 3rd percentile for target ht = target ht 8.5 cm
 - 97th percentile for target ht= target ht + 8.5 cm

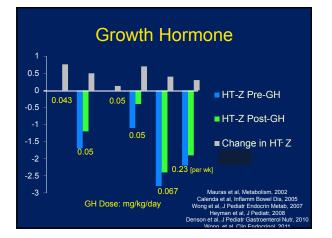


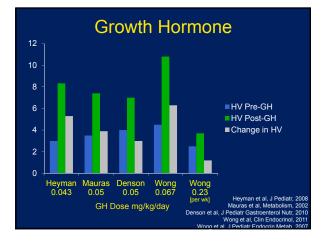


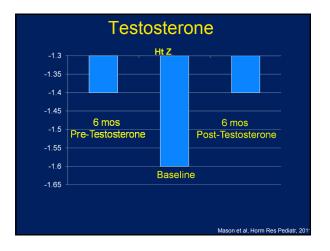


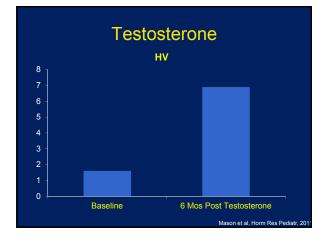


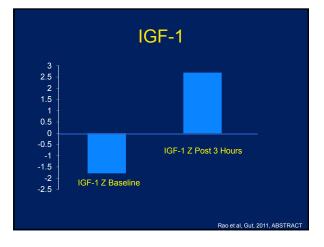


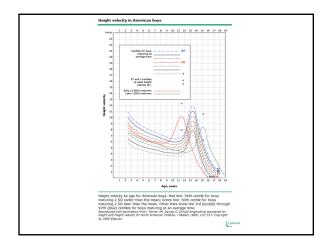


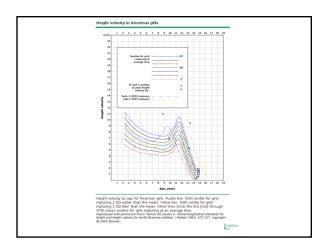


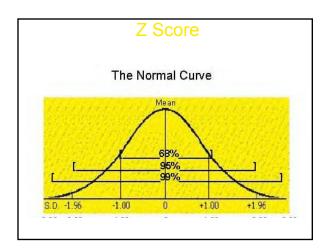


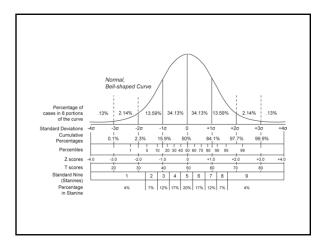


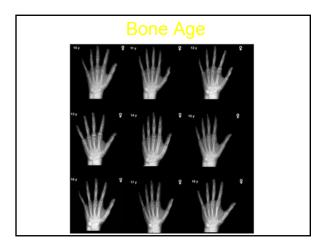











Monitoring

- Biologic parental ht for calculation of target ht
 - Females: [Mother's Ht (cm) + Father's Ht (cm) 13]/2
 - Males: [Mother's Ht (cm) + Father's Ht (cm) + 13]/2
 - 3rd percentile for target ht = target ht 8.5 cm
 - 97th percentile for target ht= target ht + 8.5 cm

Growth Impairment Definitions for Our Study

- Height Velocity Z Score < -1.66
- Change in Height Velocity Z score of -0.5 from the screening visit
- Height Z Score < -1.66

Z Scores Based on Bone Age

