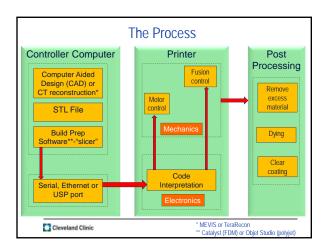
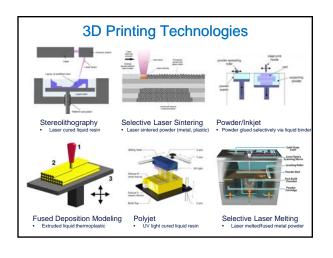
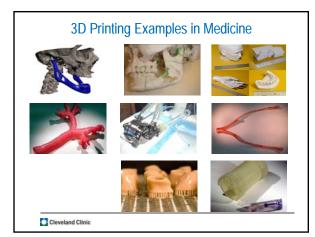

Three-Dimensional (3D) Printing: A Novel Tool for Surgical Planning and Intraoperative Guidance


Nizar Zein, M.D. Endowed Chair in Liver Diseases Chief of Hepatology The Cleveland Clinic

Cleveland Clinic


Disclosure

I have no conflict of interest in relation to this presentation



Surgical Planning

- Fact: Great public, governmental and professional interest in improving surgical outcomes
- A wide-range of pre-operative planning techniques have been used to diminish operative time and complications:
 - —Imaging (CT, MRI, angiogram, biliary imaging, etc.)-2D
 —Computer-assisted 3D imaging-viewed through 2D
 - computer screen
 - -Generic physical models-not patient specific

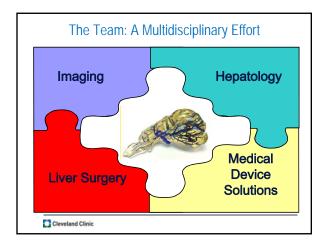
Limitations in Liver Imaging

- Complex and overlapping vascular and biliary anatomies
- Lack of transparency of liver parenchyma interfering with intra-operative visualization of anatomical structures
- absence of reliable liver surface markers corresponding to hepatic segmentation
- Mobilization of the liver during surgery limits the utility of intraoperative imaging.

Cleveland Clinic

Hypothesis

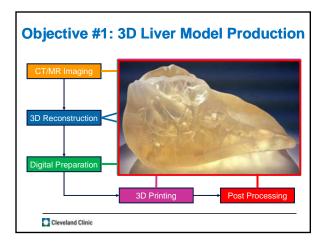
The production of a patient-specific, anatomically accurate physical model of the liver may overcome the limitations of 2D and 3D imaging and accordingly improve surgical outcomes

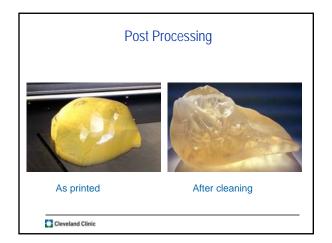

Cleveland Clinic

3D Printing of Skull in Complex Craniomaxillofacial Surgery Improved Outcome

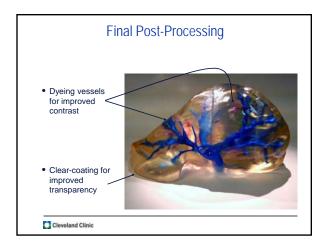
- Prospective trial (45 patients) compared operative planning, measurement accuracy and operative time:
 - -Standard imaging
 - -Standard imaging + 3D printed model
- Patients-specific 3D printed models improved accuracy, lowered operative time and significantly improved understanding of spatial relationship of structures in critical anatomical areas.

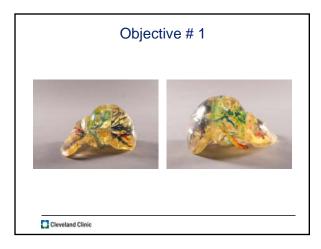
```
Cleveland Clinic
```


D'Urso PS, et al. J Craniomaxillofac Surg 1999

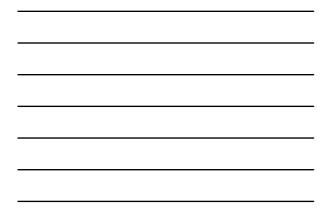


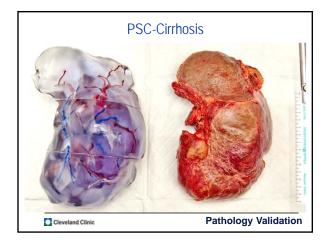
Objectives


- 1. Create the first patient-specific three 3D printed liver based on standard 2D imaging (CT and MRI)
- 2. Validate the accuracy of 3D-printed liver models against native resected liver specimens
- 3. Assess the utility of individualized 3D printed livers in surgical planning and medical education.

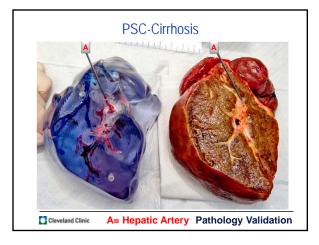


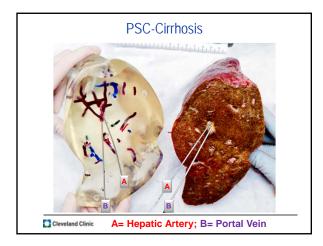
Greater Transparency and Better Preservation

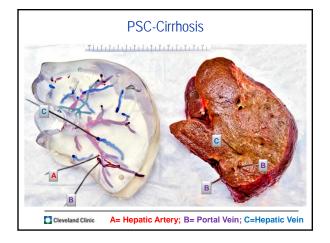

Cleveland Clinic

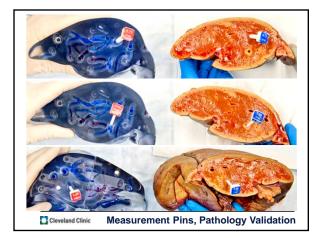

Objective # 2: Accuracy Validation

- 3D-generated models were compared to:
 - ► Native livers intra-operatively
 - ➤CT sections before surgery
 - ➤ Gross pathology slices after surgery
- Measurements
 - -Overall shape, vasculature and biliary anatomy
 - -Linear Measurements
 - -Volumetric measurements









<page-header><page-header><section-header><section-header><text><text><text><text>

Cleveland Clinic

Objective # 3

APPLYING 3D LIVER MODELS TO CLINICAL PRACTICE

► Living Donor Liver Transplantation

- ≻Hepatic Tumor Resection
- ➢Medical Education

Cleveland Clinic

LDLT

- Case #1: Middle hepatic vein curved and too close to resection plane in the donor.
- Case # 2: Rejected donor based on length of R hepatic artery (too short for anastomosis

Resection for HCC

- Hepatic resection is considered the most curative approach for hepatic tumors.
- Characterization of intrahepatic anatomy, lesions size, number, location and proximity to vascular and biliary structures is critical to achieve cure.
- Traditional imaging modalities, including 2D CT & MRI, provide limited information on the tumor's extent and its relationship with surrounding vessels for complex hepatic resection planning.

Cleveland Clinic

Difficult to Resect Liver Tumors

• Defined as:

Extended right/left hepatectomies

➤Central resections

- ➢Polysegmentectiomies
- ► Large atypical resections
- We evaluated the asset of 3D-printed liver models for surgical preplanning and intraoperative guidance.

Cleveland Clinic

AIMS

- Compare 2D imaging (CT or MRI) to 3D printed liver models for preoperative surgical planning and intraoperative guidance:
- Determination of resectability
- Changes in operative strategy

Patients & Methods

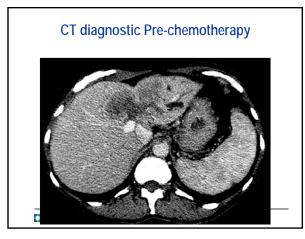
- Prospective study (Jan-Aug 2014) of 6 patients with liver tumors, who underwent high-risk procedures for complex liver tumors.
- 3 patients with central intrahepatic cholangiocarcinoma, 1 patient with Klatskin tumor, and 2 patients with metastatic colon cancer into the liver.
- Median lesion size 7.1 cm.

Cleveland Clinic

Results: Pre-Op	
 In 3 of the 6 cases, the pre-operative plan was modified after review of anatomical spatial relationship of tumor t nearby structures in the 3D model compared to initial pl based on standard imaging alone. 	0
Changes included:	
-resection modification,	
-extension and intrahepatic vascular reconstruction.	

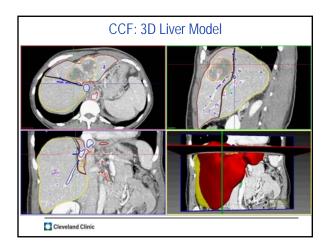
Cleveland Clinic

AASLD Abstract

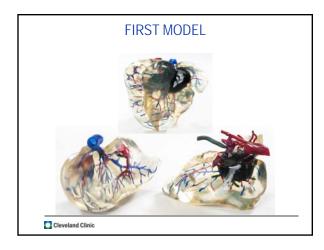

Results: Intra-Op

- Surgeons reported greater confidence with use of 3D model for identification of intra and extrahepatic structure, segmentation and tumor specific extent.
- Surgeons agreed that 3D model offered a realistic representation that allowed interactive manipulation simulating intraoperative mobilization.

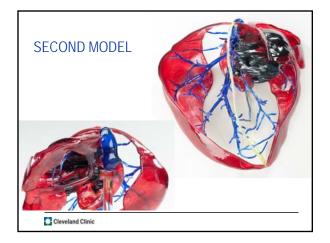
Cleveland Clinic

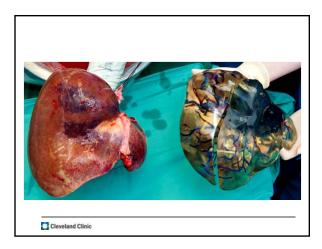

AASLD Abstract

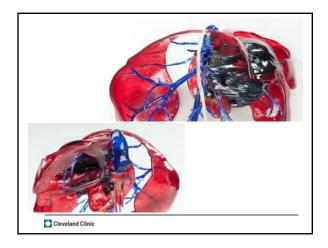
▶4/2013:	Developed pruritis of extremities and torso.
≻6/2013:	Lab work → Transaminitis and elevated liver tests
	Abd MRI → L lobe hepatic mass (9 cm), likely malignant.
	The mass abutting the IVC and hepatic veins with
	encasement of L and middle hepatic veins. Market L
	sided biliary dilation
≻7/3/13:	CT Guided Biopsy: poorly differentiated
	adenocarcinoma consistent with primary
	cholangiocarcinoma.



Outside Institution

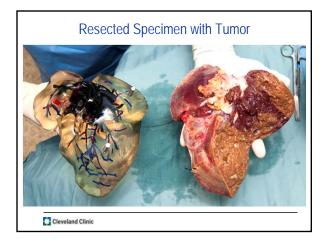

• Based on all testes, patient was evaluated at Rosewell Park, and tumor was determined unresectable.

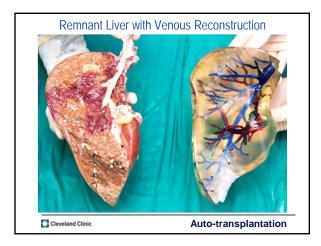



The Plan

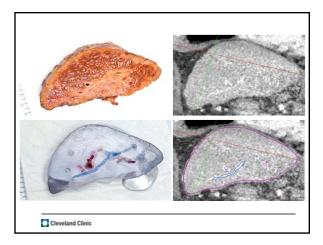
≻Total hepatectomy:

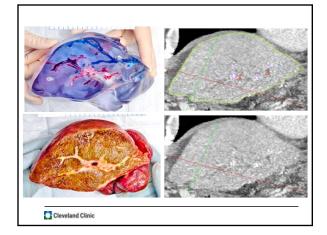
- Ex-vivo left trisegmentectomy and reconstruction of the RHV and IVC using cryopreserved femoral vein graft
- -Intraoperative radiation therapy to the HA nodal region
- Auto implantation of the right lobe remnant of the liver
- Roux-en-Y hepaticojejunostomy.





Radiology Teaching


- Interpretation of CT/MRI requires 3D visualization skills of the complex spatial relationships between structures.
- Classic medical education relies on cadaveric dissection and 2D visual representations.
- Detrimental increase in cognitive load and less retention in students with limited innate spatial visualization abilities.
- Existing physical anatomical models are limited by their inability to completely replicate reality.


Cleveland Clinic Preece, D., et al. (2013). "Let's get physical": advantages of a physical model over 3D computer models and textbooks in learning imaging anatomy." Anat Sci Educ 6(4): 216-24.

Teaching Case

- Cryptogenic Cirrhosis
- Pathology Validation
- CT Interpretation
- Anatomy Identification
- 7 Slices/ 7 Blocks
- 100% scale
- 3D-model/ Explantedpathology/ CT-with outline/ CT-without outline

Innovations in Medical Education: Case Western Reserve University

Cleveland Clinic

Bio-3D Printing?

Conclusions

- Transparent 3D-printed models used for surgery granted:
 - Easier segmentation

Cleveland Clinic

- Better comprehension of spatial relationships
- Higher confidence levels among surgical staff
- ➤ 3D-printed models may provide a novel educational tool

Every life deserves world class care.

