"Islet" Them Take My Whole Pancreas!

Jaimie D. Nathan, MD Surgical Director, Pancreas Care Center Cincinnati Children's Hospital Medical Center

> NASPGHAN Annual Meeting October 10, 2015

Cincinn Childre

Disclosures

 In the past 12 months, I have had no relevant financial relationships with the manufacturer(s) of any commercial product(s) and/or provider(s) of commercial services discussed in this CME activity.

> Children Children

Objectives

- Review surgical drainage procedures and resections for chronic pancreatitis
- Recognize indications and patient evaluation process for total pancreatectomy and islet autotransplantation (TPIAT)
- Understand outcomes following total pancreatectomy and islet autotransplantation

Circ Cincinnati Children

Chronic Pancreatitis (CP)

- Progressive, irreversible damage to pancreas - Numerous etiologies in children
- Varying inflammation, scarring, pancreatic duct abnormalities, exocrine atrophy, secondary involvement of islets
- Variable degree of pain, exocrine insufficiency, occurrence of diabetes

Hallmark: intractable and debilitating pain, with poor quality of life

Overall Treatment Goals

- To relieve acute and chronic pain
- To calm disease process to prevent repeated attacks
- To correct metabolic consequences - Malnutrition
 - Diabetes
- To manage complications of chronic pancreatitis

When maximal medical therapies and endoscopic approaches fail to relieve pain and to address specific complications, surgical procedures may be considered

Cinci

Indications for Surgery

- Approximately 50% of CP patients eventually require surgery¹
- <u>Classic indications:</u>
- Bile duct obstruction
- Duodenal obstruction
- Pseudocysts
- Suspicion of malignancy
- Debilitating pain that fails to respond to medical and endoscopic treatment options - most common ¹Mitchell et al. Lancet 2003;361:1447-1455.

Cincinn Childre

Overall Aims of Surgery

- To provide long-term relief of pain and improve QOL
- To ensure low risk of morbidity or mortality
- To preserve as much pancreatic tissue as possible to preserve function
 - Exocrine function
 - Endocrine function
- To resolve complications involving adjacent organs

Cincinna Children

Timing of Surgery

· Few studies have examined optimal timing

- Earlier surgery may be more beneficial by delaying progressive destruction of parenchyma¹
- Some studies have reported that surgery within 3 years of symptom onset may achieve better pain relief²
- Because surgery is not uniformly successful in all patients, others advocate "watch and wait" approach

No clear consensus on timing of surgery for CP

¹Nealon et al. Ann Surg 1993;217:458-466. ²Ahmed Ali et al. Cochrane Database Syst Rev 2012.

Cincinnat Children

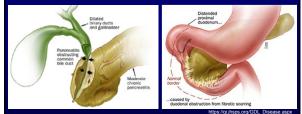
Approach to Surgery

No single surgical procedure recommended for all patients with chronic pancreatitis

- · Procedure selected on basis of:
 - Severity of pain
 - · Pancreatic duct abnormalities
 - Extent of pancreatic tissue disease
 - Presence of local complications
 - Overall condition of patient

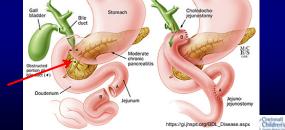
Cincinnati Children's

Approach to Surgery

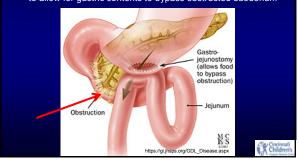

No single surgical procedure recommended for all patients with chronic pancreatitis

- Types of surgical procedures:
 - Bypass procedures
 - Drainage procedures
 - Partial pancreatic resections
 - Combination of drainage + partial resection
 - Total pancreatectomy with islet autotransplantation

Cie Cincinna Children


Treatment of Obstruction

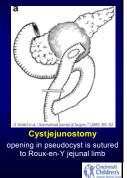
• Due to inflammation and scarring in pancreatic head, bile duct or duodenum may become obstructed


For mechanical obstruction in <u>absence</u> of pancreatic pain, most will consider bypass procedures


Biliary Obstruction Choledochojejunostomy: Roux-en-Y jejunal limb sutured to bile duct to allow bile to drain from liver into intestine

Duodenal Obstruction

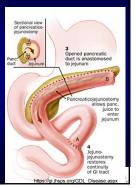
Gastrojejunostomy: Proximal jejunum sutured to stomach to allow for gastric contents to bypass obstructed duodenum



Pancreatic Pseudocysts

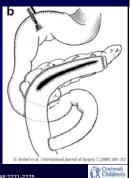
- Collection of pancreatic fluid outside normal confines of duct system
- Common complication in CP (25%)
- Most resolve spontaneously Surgery considered if symptoms are persistent, cyst is enlarging, or complications occur, and endoscopic & interventional approaches fail

Cystgastrostomy opening in pseudocyst wall is sutured to posterior wall of stomach



Cincinnat

Large Duct Disease

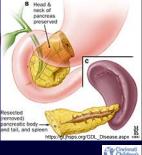

- Longitudinal Roux-en-Y pancreaticojejunostomy
 - Partington-Rochelle "modified Puestow" procedure
 - Drainage procedure
 - Dilated pancreatic duct is opened lengthwise and Roux jejunal limb is sewn to longitudinally opened duct
 - Simple, low risk of complications
 - Preserves pancreatic tissue

Large Duct Disease

- Longitudinal Roux-en-Y
 pancreaticojejunostomy
 - Short-term pain relief in 75%
 - Recurrent pain in >50%¹
 - Incomplete duct decompression or continued inflammation in head
 - <u>Current indication:</u>
 - Isolated PD dilation (>7mm) or "chain of lakes" without inflammatory mass in head & without hereditary etiology

¹Laje et al. J Ped Surg 2013:48:2271-2275.

Distal Stricture/Focal Disease


- Distal pancreatectomy
 - May be considered if predominant disease is in body/tail of pancreas
 - Isolated duct stricture or pseudocyst disease
 - Resection of pancreas to left
 of portal vein
 - Low risk of complications, mortality, especially if spleen preserved

Distal Stricture/Focal Disease

- Distal pancreatectomy
 - Drawback:
 - Pain often recurs within a few years, because disease in head has not been addressed
 - <u>Limited current utility in CP</u>:
 Local tail complications
 - Pseudocysts
 - Pseudoaneurysms

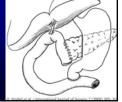
Children'

Enlarged Head

- Many CP patients present with inflammatory enlargement of head of pancreas which causes obstruction of main pancreatic duct
 - "Pacemaker" of disease
- Several surgical approaches for this disease variant have been assessed
- Some randomized controlled trials in adults
- Few reports and series in children
- Types of surgical procedures:
 - Partial resection (pancreaticoduodenectomy)
 - Combination of drainage + partial resection

Children

Enlarged Head


• Pancreaticoduodenectomy ("Whipple")

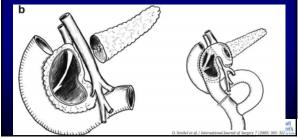
- Utilized for treatment of pain and the complications of CP
- Rationale: eliminates obstructive mass in head of pancreas and drains the remaining pancreatic duct

Enlarged Head

- Pancreaticoduodenectomy ("Whipple")
 - Major advantage: complete resection of head removes possibility of disease recurrence originating in head
 - Major disadvantage: surrounding non-diseased organs (bile duct, duodenum) are sacrificed and require reconstruction
 - Low mortality (<0 5%)
 - High morbidity (>40%)
 Major cause: anastomotic leak
 - Pain relief in 71 89% at 4 6 yrs

Pancreaticoduodenectomy ("Whipple" procedure)

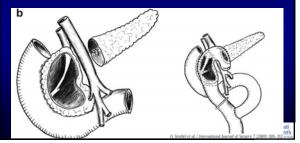
- "Standard" Whipple or pylorus-preserving technique
- Three anastomoses: pancreatic, biliary, gastrointestinal
- Late endocrine and exocrine dysfunction in up to 50%
- Uncommonly utilized in children with CP


Enlarged Head


- Duodenum-preserving pancreatic head resection (DPPHR)
 - Combined drainage + partial resection
 - Rationale: achieve benefits of extensive head resection and decompression of pancreatic duct, while preserving bile duct and gastrointestinal continuity
 - Three primary operations have evolved:
 - Beger procedure
 - Berne procedure
 - Frey procedure

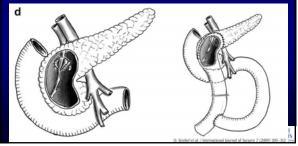
Children's

Beger Procedure


- Resection of pancreatic head, leaving rim along duodenum, with division of pancreas over portal vein
- Reconstruction: Roux jejunal limb sutured to distal pancreas and to remnant rim along duodenum (two anastomoses)

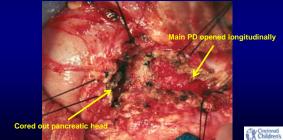
Beger Procedure

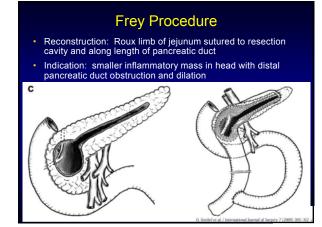
- Pain relief in 80 85% of patients, well-maintained at 5 yrs
- Low mortality (0 3%); morbidity = 15 32%
- Preserves fxn with minimal exocrine/endocrine insufficiency


Berne Procedure

- Technical simplification of Beger procedure: extent of head resection is same, but no dissection over portal vein
- Reconstruction: single anastomosis of Roux jejunal limb to pancreas resection cavity

Berne Procedure


- Pain relief in 85 89% of patients
- Low mortality (0 1%); morbidity = 20 23%
- Equivalent pain and QOL outcomes vs. Beger procedure



Frey Procedure

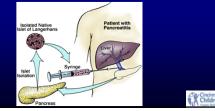
- More limited head excavation than Beger procedure
- Main pancreatic duct opened along its course to tail
- Pancreatic neck preserved \rightarrow lower operative risk

Frey Procedure

- Pain relief in >85% of patients
- Low mortality (<1%); morbidity = 9 39%
- · Well-maintained exocrine and endocrine function

Joi mal of Pediatric Surgery, By Michael D. Rollin

8 of 11 children had excellent or good results after Frey

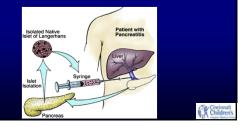

Frey procedure for chronic pancreatitis in children: A single center experience

- Sukanta Ray^{*}, Sumit Sanyal, Supriyo Chatak, Sujan Khamrui, Jayanta Biswas, Suman Saha, Tuhin Subhra Mandal, Gautam Chattopadhyay 91% of children (n = 24) remained pain-free with median follow-up of 29 months

Cincie Child

Although conventional surgeries for CP result in initial pain relief, pain recurs in more than 50% of patients over the long-term

Failure of conventional surgery is considered an indication for total pancreatectomy with islet autotransplantation (TPIAT)



Minimal Change Disease

- Diffuse inflammatory process and scarring
 - Absence of gross morphologic changes
 - Histologic evidence of chronic inflammatory destruction of parenchyma
 - No main duct dilation or inflammatory mass
 - Drainage procedures and resections not useful
- Pain is debilitating and refractory to medical and endoscopic approaches
 - TPIAT is utilized to treat refractory pain

Cincinnat Children

Total pancreatectomy with islet autotransplantation (TPIAT)

TPIAT

- First performed in 1977 at University of Minnesota
 First TPIAT in a child in 1989
- Primary goals:
 - To relieve incapacitating pain
 - To eliminate need for narcotics
- Goal of IAT:
 - To preserve β-cell mass & insulin secretory capacity
 To prevent or minimize otherwise inevitable brittle diabetes
- IAT is <u>not</u> considered experimental and is covered by most 3rd party payers in U.S.

Children'

TPIAT Patient Selection

- Highly-selected patient subgroup with intractable pain or frequent occurrences of acute attacks to the point of incapacitation, with one of the following:
 - No conventional operative option
 - Failure of prior conventional surgery
 - Idiopathic or genetically-linked recurrent acute pancreatitis
- Lower threshold may be considered for patients with hereditary pancreatitis associated with an elevated risk of progression to pancreatic cancer (eg, PRSS1)

Cincinnati Children

Contraindications

• To IAT:

- Pre-existing IDDM
- Advanced NAFLD, other parenchymal liver disease
- Portal hypertension, portal vein thrombosis

Poor candidates for TPIAT:

- Visceral hyperalgesia
- "Functional" pain
- Severe psychosocial maladaptation, drug-seeking behavior

Cincinna Childre

CCHMC Patient Evaluation

Multidisciplinary

- Pediatric transplant
- surgeon
- Gastroenterologist
- Endocrinologist
- Pain team
- Psychologist
- Geneticist
- Dietician
- Social worker

Studies

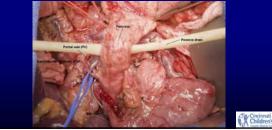
- Cross-sectional imaging (MRI/MRCP)
 ERCP
- Genetic testing
- Exocrine function
- testing (stool, direct)
- Mixed-meal tolerance testing

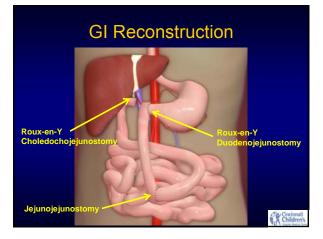
Children

CCHMC Criteria for TPIAT

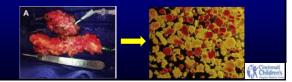
- Diagnosis of chronic pancreatitis or acute recurrent pancreatitis by objective criteria
 - Cross-sectional imaging, EPI, histopathology, genetics
- Chronic pain >6 mos duration with daily narcotic use or severely impaired QOL, with adequate interventions by Pain team
- · Absence of reversible cause of pancreatitis
- Failure of medical and endoscopic interventions
- Adequate β-cell function
- No physiologic or psychosocial contraindication

Cincinnati Children


TPIAT Procedure


- Total pancreatectomy
- Partial duodenectomy (D1 preserved)
- Splenectomy
- Cholecystectomy

Surgical Considerations


- Blood supply to pancreas preserved until just before resection to avoid warm ischemia
- GI reconstruction after removal of pancreas

Islet Preparation and Infusion

- Anticoagulation with heparin (70 U/kg)
- Infused slowly via splenic vein stump with measurement of portal pressures
- If pressure >25 cm H₂O, infusion is stopped to allow autoregulation
- Strict blood glucose control insulin infusion

Postoperative Management

- Doppler Ultrasound
- Strict blood glucose control (80 120) to prevent hyperglycemic injury to islets
 Continuous glucose monitor
- Individualized pain management plan
- Heparin infusion x 7 days
- Dextran infusion x 48 hrs to prevent instant bloodmediated inflammatory response, followed by aspirin
- Tube feeds via J-port of GJ tube
- Pancreatic enzyme replacements

Children

Surgical Complications

- Overall rate ≈ 15 20%
- Bleeding (5 7%)
- Intra-abdominal abscess, wound infection (5%)
- Small bowel obstruction (5%)
- Portal vein thrombosis (2 4%)
- Enteric leak from GI anastomoses (3%)
- Bile leak (1 − 2%)
- Systemic inflammatory response syndrome
- Delayed gastric emptying
- GI bleeding (gastritis, ulcer)

Cincinnati Children's

Outcomes of TPIAT in Children

Improvement in pain and QOL scores¹

- Higher rates of insulin independence, versus adults²
 In children <12 yo, 55% insulin independent and 30% with partial islet function
 - Greater # islets for body weight and lower insulin demands
 - Higher replicatory capacity³; islet neogenesis of ductal origin⁴
- Islet function durability especially good for pts <21 yo and those with short history of pancreatic disease $^{\rm 5}$
 - Most with excellent islet function at 3 yrs remain off insulin for years despite growth into adulthood

¹Bellin et al. Clin Gastroenterol Hepatol 2011;9:793-799. ³Sutherland et al. J Am Coll Surg 2012;214:409-424. ³Meier et al. Diabetes 2008;37:1584-1594. ⁴Soltani et al. Acta Diabetol 2013;5:0807-814. ³Bellin et al. Curr Diab Rep 2010;10;326-331.

TPIAT in Children

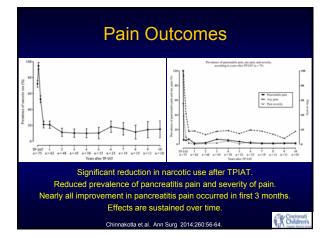
Total Pancreatectomy and Islet Autotransplantation in Children for Chronic Pancreatitis

Indication, Surgical Techniques, Postoperative Management, and Long-Term Outcomes

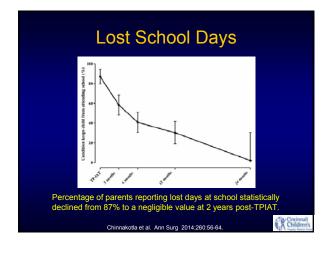
Srinuth Chinnalotda, MD,* | Melena D, Bellin, MD,† Sarah J, Schwarzenberg, MD,† David M, Radosevich, PhD, RN,* Marie Cook, MPH,* Tr B. Dunn, MD,* Gregory J. Beilman, MD,* Martin L, Freeman, MD,§ A. N. Balamurgan, PhD,* Josh Wilhelm, MS,§ Burbara Bland, MS, RN,* Jose M, Jimenez-Fegu, MD,† Bernhand J, Hering, MD,* Schwar M, Toterey, MD,* Timothy L, Pruett, MD,* and David E. R. Sutherland, MD, PhD*‡

als of Surgery • Volume 260, Number 1, July 2014

Largest series of children with CP treated with TPIAT

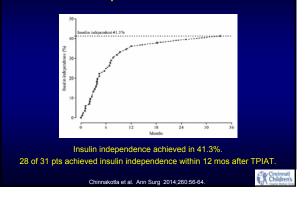

University of Minnesota

75 patients


1989 – 2012

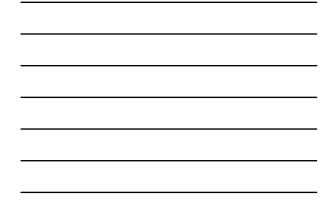
Children's

Cincir Child





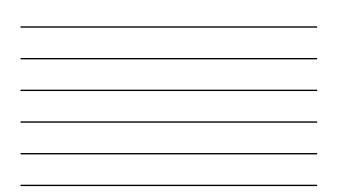
Insulin Independence Over Time



Insulin Independence by IE/kg

	6 mo		12 mo		24 mo		36 mo		C-Peptide- Positive (>0.6	HbAIC With
5	в	*		.74		74		96	ng/mL), %	Mean <7.0%
2500 IEQ kg	15		15		15		10	_	84	81
Insulin independent	2	13 53	2	13	2	13	1	10	1907	
Partial function	8	53	6	40	6	-40	3	30		
Insulin dependent	5	33	7	47	7	-47	.6	60		
500-5000 IEQ kg	17		17		17		14	— •	100	96
Insulin independent	5	29 71	9	53	9	53	7	50 <		
Partial function Insulin dependent	12	71		47	- 2	53 29 18	1	29		
	0	0	0	0	- 22	18		23		
5000 IEQ kg	17	53	17	76	17.	100	12		100	100
Partial function	-	23	1.5	18	1.5	144		22		
Insulin dependent	- fill	- 22	1.1	1.8	- 22	18		0		
Insulin i	indepe	nden	ce is	depe	ndeni	t on n	umbe	er of is	slet equivale	nts
		(IE) 1	transp	plante	ed per	r <mark>kg</mark> b	ody v	veight		

Conclusions


- Surgery plays a key role in treatment of children with CP and is considered when maximal medical therapies and endoscopic approaches fail to relieve pain and to address complications
- Comprehensive multidisciplinary patient evaluation is critical to ensure optimal surgical management
- Conventional operations can provide long-term pain relief and improvement in QOL in children with CP
- In appropriately selected children, TPIAT achieves durable pain relief and improves QOL with manageable glycemic control

Cincinnati Children

Questions?

CCHMC Pancreas Care Center Team

Gastroenterology
Surgery
Radiology
Social Work
Pain Team
Endocrinology
Child Life
Genetics
CRC, Statistician

