Genetic Variation In Very Early Onset Inflammatory Bowel Disease

CJ Moran; JR Kelsen; J Kaplan; H Huang; M Rivas; N Dawany; MB Heyman; B Kirschner; T Mangatu; K Benkov; JE Teitelbaum; S Cohen; BD Gold; M Devoto; R Xavier; R Baldassano; MJ Daly; HS Winter

Concurrent Session 5 – IBD III
NASPGHAN Annual Meeting
October 10th, 2015

Disclosure

• I have no financial relationships to disclose.

Common Variants in IBD

• 163 Adult IBD Risk SNPs from GWAS Meta-analysis
 – Many play role in pediatric IBD
 – Limited individual effect (OR <2.0)
 – Adult CD: High SNP burden associated with ileal involvement and “early onset”
• Much heritability remains unexplained (~75%)
 – Rare variants are one possible source
 – GWAS may miss rare variation (MAF<1% vs. 5%)

Joslin L. Nature 2012
Essers JB Inflamm Bowel Dis 2009
Ananthakrishnan AN Am J Gastro 2014
Studying Very Early Onset IBD

- Mendelian Immunodeficiency presents as VEO-IBD
- Earlier onset = Less environmental triggers
- VEO-IBD subset may be enriched for highly penetrant (if not causative) variants
- LoF mutations can cause IBD
 - IL-10 defects (IL10, IL10RA, IL10RB) by linkage
- Whole exome sequencing identifies Mendelian IBD
 - XIAP, LRBA, TTC7A

Project Aim

To determine the role that IBD risk SNPs AND rare variants play in VEO-IBD

Methods

- Patients (and parents) diagnosed with IBD at <6yo were recruited
 - Patients with severe phenotype diagnosed just after 6yo also included
- Recruitment across US and beyond
 - Children’s Hospital of Philadelphia
 - University of Chicago
 - UCSF
 - Monmouth Medical Center
 - Mount Sinai Hospital
 - Children’s Healthcare of Atlanta
- DNA collected from blood or saliva
Proband Cohort

- 95 Probands
 - Mean age at Diagnosis: 2.6yo [IQR 1.3-4.0]
- 89.0% Caucasian, 1.4% Asian, 1.4% Hispanic, 8.2% Middle-Eastern
- 20% had 1st degree relative with IBD
- 35 Crohn’s disease
 - L1 5.9% L2 64.7% L3 29.4%
- 36 Ulcerative Colitis (76.9% E4)
- 24 IBD-Unclassified

Hypothesis 1

The age of onset of VEO-IBD is due to a large burden of known IBD risk SNPs.

Common SNP Genetic Burden

- Genotyping performed using Immunochip
- Genetic Risk Score was calculated
 - Cumulative score based on 110 risk alleles
 - Component score (at each locus) based on log OR (for IBD) from Jostins et al., & number of risk alleles (0-2)
 - Normalized based on “IBD Risk” of Healthy Controls
 - Compared to adult-onset UC and adult-onset CD
VEO-IBD Genetic Risk Score

- VEO-IBD GRS higher than controls ($p=1\times10^{-7}$)
- VEO-IBD similar to adult-onset UC ($p=0.2$)
- VEO-IBD lower than adult-onset CD ($p=0.02$)
- Linear Regression found no association between VEO-IBD Age of Onset and Risk Score ($p>0.3$)

Burden of "known IBD SNPs" does not explain early onset of VEO-IBD

Hypothesis 2

The age of onset of VEO-IBD is due to excessive rare variation in IBD risk genes.

WES Methods

- Exome sequencing performed at the Broad Institute (Cambridge, MA)
- Exome capture was performed using Agilent Whole Exome SureSelect kit
- Sequencing performed on Illumina HiSeq
- Variant calling was done with GATK toolkit
- In silico modeling incorporated into analysis
 - SIFT, Polyphen-2, FATHMM, Mutation Taster
VEO-IBD Cohort Analysis

- Analysis filtered on:
 - Extended splice site, nonsense, & missense variants
 - Variants with 2+ deleterious predictors
 - Found in Mendelian and IBD GWAS genes
 - MAF < 0.5% in ExAC Controls (n=~60,000)
- Binary outcome of presence/absence of deleterious variant in a gene for filtered genes
- Compared to ExAC controls

Gene List Filter

- Mendelian Gene List:
 - IL-10 defects (IL10, IL10RA, IL10RB)
 - CGD (CYBB, CYBA, RAC2, NCF1, NCF2, NCF4)
 - Hermansky Pudlak (HPS1-8)
 - Familial Mediterranean fever (MEFV)
 - Wiskott Aldrich syndrome (WASP)
 - TTCT7A, PIK3R1, XIAP, LRBA
 - SKIV2L, PLCG2
- Risk Genes from IBD GWAS

Rare Variation Analysis

<table>
<thead>
<tr>
<th>Genes</th>
<th>OR</th>
<th>Rare Variation Rate</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCDC888</td>
<td>2.6</td>
<td>5.4% vs. 2.2%</td>
<td>0.051</td>
</tr>
<tr>
<td>NFIL3</td>
<td>4.0</td>
<td>2.2% vs. 0.6%</td>
<td>0.053</td>
</tr>
<tr>
<td>IL6ST</td>
<td>2.8</td>
<td>4.3% vs. 1.6%</td>
<td>0.058</td>
</tr>
<tr>
<td>NOD2</td>
<td>0.8</td>
<td>4.3% vs. 5.3%</td>
<td>0.667</td>
</tr>
</tbody>
</table>

No individual gene is overly burdened with very rare LoF mutations.
Summary

• In our cohort of VEO-IBD patients, there was not an excessive burden of known IBD Risk SNPs

• Although rare genetic variants occur in VEO-IBD, no individual gene drives the disease

• Rare genetic variants still may play a strong role in VEO-IBD

Future Directions

• Focus on outlier probands in the GRS distribution to identify causative variants

• Broaden gene filter to include candidate genes related to Mendelian genes (nox1, duox2)

• Functional studies in specific variants

• Ultimate goal to identify key pathways to select a novel therapy or find a new target for drug development

Acknowledgements

MassGeneral Hospital for Children
Harland Winter, MD
Alessio Fasano, MD
Jess Kaplan, MD
Matt Gerace

Broad Institute
Mark Daly, PhD
Ranmit Xavier, MD, PhD
Manny Rivas, PhD
Hailiang Huang, PhD

Children’s Hospital Boston
Ralf Geha, MD
Michel Massaad, PhD

Monmouth Medical Center
Jonathan E. Teitelbaum

Exome Aggregation Consortium

Children’s Hospital of Philadelphia
Robert Batshawa, MD
Judith Kelsen, MD
Noor Dawaay, PhD
Manuela Devoto, PhD

University of Chicago
Barbara Kirscher, MD
Thomas Mangatu

The Mount Sinai Hospital
Keith Berkov, MD
Children’s Center for Digestive Healthcare
Stanley Cohen, MD
Ben D. Gold, MD

University of California-San Francisco
Mel Heyman, MD

Funding: NHGRI and Harvard Institute for Translational Immunology
Any Questions?