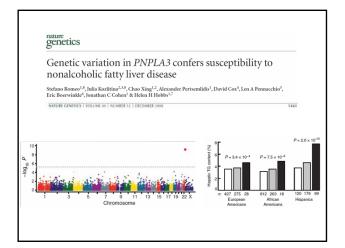

Methods Development: Liver and

Krishna Nayak, PhD & Harry Hu, PhD


Iterative Decomposition using Echo-Asymmetry in the Least squares sense (IDEAL)

an optimal fat-water signal separation technique that utilizes knowledge of ¹H spectra in lipid and water - an extension of NMR except it is multi-voxel and 3-dimensional across entire liver

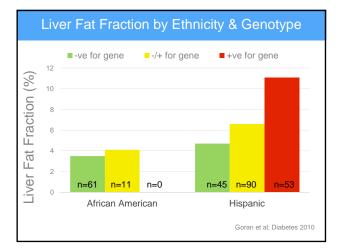
Gene (first report)	Protein	Function	Allele variant	Minor allele frequency	Steatosis	NASH	Odds ratio NASH	Associations with other liver disorders
MNPLA3 (5)	Patatin-like phospholipase domain-containing protein 3	TG hydrolase?	rs738409 1148M	0.23 in EA 0.49 in Hispanics 0.17 in AA	Yes	Yes	3.26	Alcohol-related cirrhosis Hepatocellular carcinoma
PPP1R38 (6)	Glycogen binding subunit of protein phosphatase 1	Enhances protein phosphatase 1 activation of glycogen synthase	n4240624	0.08	Yes	No	0.93	ND
NCAN (6)	Neurocan	Unknown	m2228603 P925	0.07	Yes	Yes	1.65	ND
GCKR (6)	Glucokinase regulatory protein	Negative regulator of glucokinase	rs780094 P446L	0,39	No	Yes (not replicated)	1.45	ND
LYPLALI (6)	Lysophospholipase-like 1	Unknown	rs12137855	0.21	No	Yes (not replicated)	1.37	ND
APOC3 (25)	Apolipoprotein C3	Limits hydrolysis of TG in circulating lipoproteins	n2854116 n2854117	0.38 in EA 0.38 in Hispanics 0.71 in AA 0.26 in EA 0.32 in Hispanics 0.66 in AA	Yes*	ND	ND	ND

Г

ethnic difference in liver fat: role of genes and dietary sugar

Effects of *PNPLA3* on Liver Fat and Metabolic Profile in Hispanic Children and Adolescents

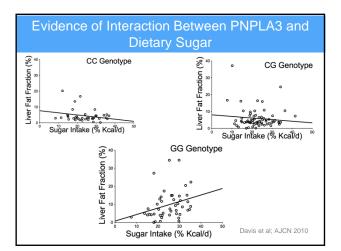
BRIEF REPORT

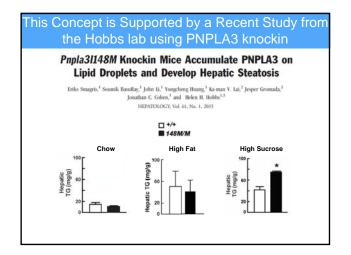

Michael I. Goran, Ryan Waiker, Kim-Anne Le, Swapna Mahurkar, Susanna Vikman, Jaimie N. Davis, Donna Spruijt-Metz, Mare J. Weigensberg, and Hooman Allayee Diabetes, 2010

Increased hepatic fat in overweight Hispanic youth influenced by interaction between genetic variation in *PNPLA3* and high dietary carbohydrate and sugar consumption¹⁻⁴

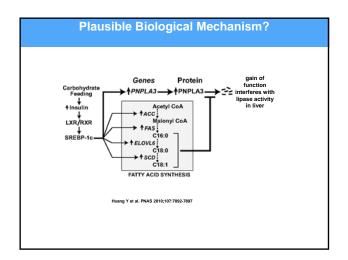
Jaimie N Davis, Kim-Inne Lé, Ryan W Walker, Susanna Vikman, Donna Spruijt-Metz, Marc J Weigensberg, Hooman Allayee, and Michael I Goran AJCN, 2010

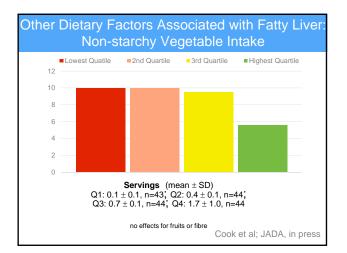

Clir	nical Char	acteristi	cs	
Trait	All Participants (n=223)	Non-NAFLD (n=126)	NAFLD (n=97)	p value
Age (year)	13.5 ± 2.9	13.5 ± 3.1	13.5 ± 2.8	NS
Male/Female (n)	96/137	43/87	53/50	0.005
Height (cm)	157.3 ± 16.6	157.4 ± 18.2	157.2 ± 11.6	NS
Weight (kg)	77.9 ± 28.2	72.1 ± 27.4	85.4 ± 27.6	3.4x10-4
BMI (kg/m ²)	30.5 ± 7.6	28.2 ± 7.1	33.4 ± 7.4	1.7x10-57
BMI percentile	94.5 ± 10.3	92.3 ± 10.8	97.9 ± 3.6	1.5x10 ⁻⁶
SAT (L)	12.1 ± 7.1	10.4 ± 6.6	14.2 ± 7.2	2.75x10-5
VAT (L)	1.8 ± 1.3	1.4 ± 0.9	2.2 ± 1.4	3.8x10 ⁻⁸
Total Fat (kg)	29.1 ± 12.1	26.1 ± 11.9	32.9 ± 11.5	5.0x10-5
Liver fat (%)	8.8 ± 8.5	3.7 ± 1.1	15.2 ± 9.4	5.4x10-32
ALT (IU/L)	14.9 ± 10.2	10.8 ± 5.4	20.7 ±12.3	2.2x10-13
AST (IU/L)	20.8 ± 8.2	17.9±4.4	24.8±10.3	4.4x10-10
TAG (mg/dL)	107.6 ± 52.7	96.6 ± 45.5	121.8 ± 58.1	0.001
Total Cholesterol (mg/dL)	140.9 ± 29.6	138.4 ± 28.6	143.9 ± 30.7	NS
HDL (mg/dL)	37.7 ± 9.4	39.0 ± 10.1	35.9 ± 8.3	0.024
LDL (mg/dL)	85.2 ± 28.4	84.4 ± 28.8	86.2 ± 28.1	NS





					Effect Allele Copy Number			
Gene	SNP	Alleles ^a	EAF ^b	Reported EAF ^b	0	1	2	pď
PNPLA3	rs738409	G/C	0.52	0.239	5.6±4.3 (n=53)	8.0±8.3 (n=109)	12.3±9.8 (n=60)	4.2x10
APOC3	rs2854117	A/G	0.35	0.302	7.1±7.6 (n=91)	9.4±8.4 (n=103)	11.3±10.5 (n=26)	0.01
GCKR	rs780094	A/G	0.32	0.391	8.6±9.0 (n=101)		10.7±9.9 (n=22)	0.44
NCAN	rs2228603	T/C	0.03	0.09	8.7±8.5 (n=212)	9.2±7.8 (n=11)	NA	0.96
LYPLAL1	rs12137855	C/T	0.92	0.79	9.7±0 (n=1)	7.8±8.4 (n=36)	8.9±8.5 (n=184)	0.50
PPP1R3B	rs4240624	A/G	0.67	0.92	8.7±7.9 (n=101)	8.8±9.6 (n=88)	8.5±7.8 (n=28)	0.38
NPs. "Effect/Ot	as mean liver fat cor her allele. ^b EAF, effe ^t p-values are obtaine	ect allele frequ	ency in Hi	spanics. Repo	orted effect a	lele frequenc	y in Caucasian	S





Obesity and NAFLD in Hispanics: The Perfect Storm

childhood obesity 7 times higher in lowincome communities relative to affluent

Greater susceptibility to this environment in Hispanics starting in first 2y of life

From a dietary perspective, this effect is most related to high dietary sugars esp proliferation of HFCS in the diet

50% prevalence of PNPLA3 gene in Hispanics related to ~2-fold higher liver fat

Impact of PNPLA3 gene on fatty liver exacerbated by high sugar diet

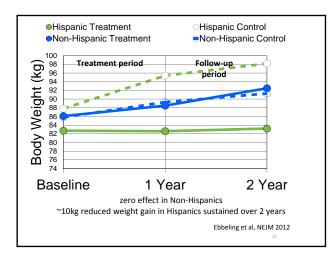
Will Reducing Dietary Sugars in Hispanics be an Effective Intervention Strategy?

Good News and Bad News

The Bad News: Incredibly Difficult to Persuade Study Sections and NIDDK of Potential Impact of this Approach

R01 DK 091578-01A1; NIDDK - May 2011

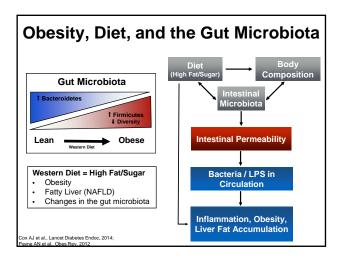
PLA3 Genotype for Reducing Liver Fat in Hispanics with Pediatric Non-alcoholic Fatt


Score = 25; 8th percentile

"Unfortunately, your application was deemed to be of low programmatic priority"

Other Grants Not Funded

R21: Omega-3 Fatty Acid Supplementation for Treatment of Fatty Liver in Children RO1: Treatment of Insulin Resistance through Reduction of Liver Fat in Minorities RO1: Improving obesity and metabolic outcomes in Hispanics through maternal-infant intervention


RO1: Improving obesity, liver fat and obesity outcomes in obese Hispanic teens through SSB reduction 26

