Selective serotonin reuptake inhibitor exposure in utero and during breastfeeding results in abnormalities in enteric nervous system development and gastrointestinal function

Virginia Saurman*, Korey Stevanovic*, Sam Li*, George Anderson$, Narek Israelyan*, Michael Gershon* and Kara Gross Margolis*
Columbia University Medical Center, Departments of *Pediatrics and *Pathology; Yale School of Medicine, Child Study Center

Introduction

• Depression during pregnancy occurs in 14-23% of women
• Selective serotonin reuptake inhibitors (SSRIs) are first-line treatment
 – Antenatal SSRI use has increased from 1.5% to 6.4% nationally
• Good safety profile
• SSRIs cross the placenta
 – Two-fold increased risk of congenital malformations
 – Alter central nervous system development
 – Alter brain circuitry
 – Maladaptive behaviors that persist into adulthood
• SSRIs inhibit the serotonin reuptake transporter (SERT)
 – Increase in serotonergic neurotransmission

Introduction

• Serotonin plays critical roles in:
 – ENS development
 – GI motility
 – Intestinal epithelial proliferation
• Little known about the effects of ante- and post-natal SSRIs exposure on subsequent ENS or GI function
 – Children exposed in utero to SSRIs & tricyclic antidepressants require laxatives 10-fold more often
 – SERT inhibition during development may lead to abnormal ENS development and disturbed GI motility
Hypothesis
• Administration of an SSRI (fluoxetine) from gestation through weaning will inhibit SERT and thus enhance serotonin-mediated effects to alter ENS development.
 – The resulting ENS abnormality will lead to long-lasting changes in:
 • GI motility
 • Intestinal epithelial homeostasis

Will fluoxetine alter ENS development and GI function?
• Dams given fluoxetine or water by oral gavage daily during pregnancy and breastfeeding
• No exposure to Fluoxetine for 3-5 weeks
• Fluoxetine-exposed and control pups examined at 6 weeks
 - ENS development
 - Motility
 - Intestinal epithelial homeostasis
• Concurrent experiments done with SERTKO mice
 - Rule out off-target drug effects

The ENS of fluoxetine treated mice is hyperplastic
• Hyperplasia of:
 – Total neurons
 – Serotonin-dependent (late-born) neurons
 • Submucosal
 – Dopaminergic
 – CGRP-expressing
 • Myenteric
 – GABAergic
The ENS of SERTKO mice is hyperplastic
- Hyperplasia of:
 - Total and serotonin-dependent (late-born) neurons.
- Submucosal
 - Total
 - Dopaminergic
 - CGRP-expressing
- Myenteric
 - Total
 - GABAergic

In vivo intestinal transit is slower in fluoxetine-exposed mice

In vivo motility is slower in SERTKO mice
CMMCs are enhanced in fluoxetine-treated mice

- Peristaltic reflex (CMMC) measured in vitro
 - Independent of extrinsic neuronal influence
 - ENS-dependent
- Spatio-temporal maps constructed with video imaging
 - Frequency, velocity, and length of CMMCs greater in fluoxetine-treated mice
- In vivo motility slower
- In vitro motility faster

Chemical sympathectomy reverses fluoxetine-induced slow GI transit

- Exposure of mice to fluoxetine during development affects ENS and CNS
 - Measurements of GI motility in vivo are stressful
 - Sympathectomy reverses stress-mediated slowing of the gut
 - Likely a central effect
- Sympathectomy eliminates fluoxetine-induced slow transit
 - Likely a sympathetic nerve-mediated slowing of the gut
 - In vivo measurements of GI motility

Fluoxetine treatment enhances mucosal growth and permeability

- Small intestine
 - Control
 - Fluoxetine
 - Significant difference
- Small intestine
 - Control
 - Fluoxetine
 - Significant difference
- Colon
 - Control
 - Fluoxetine
 - Significant difference
- Intestinal Permeability
 - Control
 - Fluoxetine
 - Significant difference
Conclusions

• We tested the hypothesis that SERT inhibition with an SSRI (fluoxetine) during development potentiates serotonin and alters the ENS to cause long-lasting changes in GI function.
 – Fluoxetine-treatment from gestation to weaning:
 • Neuronal hyperplasia
 • Slow in vivo GI transit due to increased sympathetic discharge
 • Enhanced CMMCs in isolated bowel
 • Enhanced mucosal growth and permeability
• Similar findings in SERTKO mice
• The coincidence of effects of fluoxetine treatment and SERTKO support the idea that serotonin and SERT are critical regulators of ENS development

Conclusions

• Potential effects of SSRI exposure on the developing ENS should be further investigated
• The exquisite sensitivity of ENS development to SERT activity may underlie the pathophysiology of gut-brain axis disorders

Thank You
Villus height, crypt depth, and intestinal epithelial permeability are greater in SERTKO mice than WT.