Selective serotonin reuptake inhibitor exposure *in utero* and during breastfeeding results in abnormalities in enteric nervous system development and gastrointestinal function

Virginia Saurman*, Korey Stevanovic*, Sam Li[&], George Anderson^{\$}, Narek Israelyan*, Michael Gershon[&] and Kara Gross Margolis* Columbia University Medical Center, Departments of *Pediatrics and [&]Pathology; [§]Yale School of Medicine, Child Study Center

Introduction

- Depression during pregnancy occurs in 14-23% of women
- Selective serotonin reuptake inhibitors (SSRIs) are first-line treatment
- Antenatal SSRI use has increased from 1.5% to 6.4% nationally
- Good safety profile
- SSRIs cross the placenta
 - two-fold increased risk of congenital malformations
 - Alter central nervous systemAlter brain circuitry
 - Maladantive behaviors that persist into adul
- SSRIs inhibit the serotonin reuptake transporter (SERT)
 Increase in serotonergic neurotransmission

COLUMBIA UNIVERSITY MEDICAL CENTER

Introduction

Jul 8;351. 2015 Aug 15;182:132-7. Drug Saf. 2015 Marj

- Serotonin plays critical roles in:
 - ENS development
 - GI motility
 - Intestinal epithelial proliferation
- Little known about the effects of ante- and post-natal
 - SSRI exposure on subsequent ENS or GI function
 - Children exposed *in utero* to SSRIs & tricyclic antidepressants require laxatives 10-fold more often

²LI Z, ⁴LI Z, ⁵Raki

 SERT inhibition during development may lead to abnormal ENS development and disturbed GI motility

COLUMBIA UNIVERSITY MEDICAL CENTER

Hypothesis

- Administration of an SSRI (fluoxetine) from gestation through weaning will inhibit SERT and thus enhance serotonin-mediated effects to alter ENS development.
 - The resulting ENS abnormality will lead to longlasting changes in:
 - GI motility
 - Intestinal epithelial homeostasis

COLUMBIA UNIVERSITY MEDICAL CENTER

Α

Chemical sympathectomy reverses fluoxetineinduced slow GI transit

- Exposure of mice to fluoxetine during development affects ENS and <u>CNS.</u>
 Measurements of GI motility in vivo are
 - Measurements of GI motility in vivo are stressful
 where the stresses sympathetic nerve activity. Sympathetcomy to determine whether sympathetic nerve-mediated slowing of the gut responsible for slow transit in fluxectine treated mice.
- G-OHDA administered to sympathectomize mic prior to measuring GI motility.
 Sympathectomy eliminates
 fluoxetine-induced slow transit.
 ____Eluvyetine transmant increases
- Fluoxetine treatment increases of a intestinal transit sympathetic nerve activity
 Likely a certific effect Colonic motility
- COLUMBIA UNIVERSITY MEDICAL CENTER

Conclusions

- We tested the hypothesis that SERT inhibition with an SSRI (fluoxetine) during development potentiates serotonin and alters the ENS to cause long-lasting changes in GI function.
 - Fluoxetine-treatment from gestation to weaning:
 - Neuronal hyperplasia • Slow in vivo GI transit due to increased sympathetic discharge
 - Enhanced CMMCs in isolated bowel
 Enhanced mucosal growth and permeability
- Similar findings in SERTKO mice
- The coincidence of effects of fluoxetine treatment and SERTKO support the idea that serotonin and SERT are critical regulators of ENS development

COLUMBIA UNIVERSITY MEDICAL CENTER

Conclusions

- Potential effects of SSRI exposure on the developing ENS should be further investigated
- The exquisite sensitivity of ENS development to SERT activity may underlie the pathophysiology of gut-brain axis disorders

COLUMBIA UNIVERSITY MEDICAL CENTER

Thank You

- Columbia University Medical Center Michael Gershon, MD Sam Li, MD, PhD

- Narek Israelyan, M.S.
- Virginia Saurman Korey Stevanovic
- GI Division Joel Lavine, MD, PhD
- Yale Child Study Center George Anderson, PhD

Grant Support • NIH KO8 • Autism Research Institute

- Meade Johnson
 Einhorn Charitable Trust

- NASPGHAN
 AGA
 John Driscoll Fund
 Louis Gerstner Fund • Columbia CTC

Vanderbilt University

Randy Blakely, MD
Jeremy Veenstra-Vanderweele

COLUMBIA UNIVERSITY MEDICAL CENTER

