What dose of exercise reduces insulin resistance in children, and application to NAFLD

Catherine L. Davis, PhD
Professor of Pediatrics, Physiology & Graduate Studies
Georgia Prevention Institute
Medical College of Georgia
Augusta University (formerly Georgia Regents U.)
katie.davis@gru.edu
No conflicts of interest to disclose

In the past 12 months, I have had no relevant financial relationships with the manufacturer(s) of any commercial product(s) and/or provider(s) of commercial services discussed in this CME activity.

NIH HL087923
P30 DK56336
Diabetes & Obesity Discovery Institute
and Medical Scholars Program,
Medical College of Georgia
PLAY PROJECT: HOW MUCH DOES IT TAKE TO REDUCE RISK?

- Tested 2 doses of a daily after-school exercise program on diabetes risk (insulin resistance) in overweight, inactive children

 58% black 42% male
 85% obese 28% prediabetic

- 0 vs. 20 vs. 40 min/day vigorous 3 mo. after-school aerobic exercise program
Baseline Testing

Random Assignment

CONTROL: Monthly family lifestyle class only

LOW DOSE: LC + 20 min/d exercise program

HIGH DOSE: LC + 40 min/d exercise program

EQUAL INTENSITY, GREATER VOLUME

Post-Testing after 3+ months of intervention
Oral glucose tolerance test

Insulin Area Under the Curve (AUC): insulin resistance
Visceral adipose tissue

Subcutaneous fat (green)

Visceral fat (red)
AFTER-SCHOOL EXERCISE PROGRAM

- 8 months (5 days/week)
- Vigorous aerobic activities
 - Fun, simple games – this was not PE
 - running games, jump rope, ball games
- Reward effort, not performance
 - Points for average HR>140 bpm
 - Small weekly prizes
- Transportation provided
• Overweight and obese children
• Fun, simple games – this was not PE
• Reward effort (heart rate) rather than performance (speed, skill)
• Convenient, no cost
20 MIN IS ENOUGH! Vigorous exercise per day to reduce diabetes risk, improve fitness

Fasting insulin

Baseline

Posttest

µU/mL

* p<.05 vs control

Davis et al. *JAMA.* 2012;308(11):1103-1112
VO2 peak

Baseline

Posttest

mL/kg/min

24

26

28

30

32

34

Control

Low-dose

High-dose

P-trend = .02

* p<.05 vs control

Davis et al. *JAMA.*
2012;308(11):1103-1112

Catherine L. Davis PhD
Davis et al. *JAMA.*
2012;308(11):1103-1112

Insulin AUC

Baseline vs Posttest

P-trend = .01

* $p < .05$ vs control

* * $p < .01$ vs control

$10^3 \mu U/mL$
** p<.01 vs control

Davis et al. *JAMA*. 2012;308(11):1103-1112
Percent body fat

Baseline

Posttest

36
37
38
39
40
41
42

P-trend < .001

MORE IS BETTER to reduce fatness

Davis et al. *JAMA.* 2012;308(11):1103-1112

* p<.05 *** p<.001 vs control
Davis et al. JAMA. 2012;308(11):1103-1112

Visceral fat

Baseline vs Posttest

Control

Low-dose

High-dose

P-trend < .001

* p<.05 *** p<.001 vs control
Subcutaneous fat

Baseline versus Posttest

- Control
- Low-dose
- High-dose

P-trend < .001

*p < .05 vs high-dose

*** p < .001 vs control

Davis et al. *JAMA.* 2012;308(11):1103-1112
BMI z-score

Baseline

Posttest

1.7
1.8
1.9
2.0
2.1
2.2

Control

Low-dose

High-dose

P-trend < .001

* p<.05 vs high-dose

*** p<.001 vs control

Davis et al. *JAMA.*
2012;308(11):1103-1112
PLAY PROJECT IMPLICATIONS

• 20 min/d aerobic activity can reduce diabetes risk. *Could fit into school day*
 – Optimized PE (SPARK)
 – Classroom PA (Mahar 2006, Donnelly 2009, Kibbe 2011)
 – Recess with adult play leaders (Howe, 2012)
 – Power Up for 30! program led by Georgia SHAPE (georgiashape.org)

• 40 min/d will require after-school time
SMART Study questions

• Are these benefits unique to exercise interventions?
• Will this approach work to reduce risk for arteriosclerosis, NAFLD and NASH in overweight children?
• Would effects be greater over a longer period of time (School year vs semester; 8 vs 3 months)?
Exercise Trials with Liver Fat Outcomes in Children

• Mostly uncontrolled pre-post trials
 – Pacifico et al. 2013, Pozzato et al. JPGN 2010, Van der Heijden et al. 2010

• A few small randomized controlled trials in adolescents have mixed results
 – Lee et al. 2012 (45 obese teen boys)
 • aerobic or resistance exercise ↓ liver fat
 – Lee et al. 2013 (44 obese teen girls)
 • aerobic, but not resistance exercise ↓ liver fat

Why were genders analyzed separately?

– J. Davis et al. 2011 (38 overweight Latina teens)
 • no effect of combined aerobic/resistance exercise on liver fat
STUDY OBJECTIVE:
ISOLATE EFFECTS OF EXERCISE

• To compare cognitive effects of after-school exercise training (40 min/day over 8 months) vs a sedentary attention control condition in overweight children.
 • Effect of exercise *per se*
 • Intent-to-treat analyses

• Ancillary study: arterial stiffness (PWV), liver fat (MRI), liver stiffness (Fibroscan), inflammation (ALT, AST, CRP) outcomes
SEDENTARY CONTROL CONDITION

• Attention control
 – Different room in same building
 – Same buses, same snacks
 – Teachers rotated between conditions

• Sedentary recreation
 • Board games
 • Crafts
 • Teacher-led group activities
 • Points for cooperation, proper use of materials, clean up
 • Points calibrated so groups got equal rewards

Catherine L. Davis PhD
175 healthy overweight, sedentary 8-11 yr olds recruited from Augusta, GA schools

- 61% female, 87% Black
- 9.7 ± 0.9 yrs
- BMI ≥ 85th percentile
- 74% obese
- BMI 26 ± 5 kg/m² (96 ± 4 %ile)
- Percent body fat 38 ± 7 %
- Peak VO₂ 30 ± 6 ml/kg/min
- 92% Needs Improvement-Health Risk

• Groups similar at baseline
RESULTS

- 89% study retention rate at posttest \((n = 155)\)

- Exercise group had 59% attendance rate
 - Heart rate average \(161 \pm 7\) beats/min
 - \(6.8 \pm 1.6\) METs
 - 10 refused posttest

- Control group had 64% attendance rate
 - 10 refused posttest
Dixon Method (2-point) Fat-Water MRI
(scaled to Lipoquant for interpretability)

In-Phase (IP) = W + F

\[
\begin{align*}
\text{Fat-signal index} &= \frac{F}{W+F} = \frac{IP}{2IP} \\
\text{Opposed-Phase (OP)} &= W - F
\end{align*}
\]

Images courtesy of Dr. S. Reeder, U. Wisconsin Madison
Liver Stiffness via Transient Elastography

Fibroscan®, Echosens, Paris, France

- Liver stiffness measurement consists in creating an elastic shear wave within the liver, measuring its speed of propagation and calculating the corresponding stiffness expressed in kilopascals (kPa).

To do so, a probe is placed between the rib bones in proximity to the right lobe of the liver. The operator, assisted by a time-motion mode ultrasonic image, locates a 5-cm deep portion of liver parenchyma free of large vascular structures. When the measurement is triggered, the vibrator gives a painless push to the tissue, creating an elastic shear wave.
Transient Elastography
THANK YOU!

Among Others…

Jerry Allison
Reda Bassali
Jigar Bhagatwala
Yanbin Dong
Barbara Gower
Bernard Gutin
Gaston Kapuku
Sheldon Litwin
Sudipta Misra
Norman K. Pollock
James Rawson
Claude Sirlin
Miriam Vos
Jennifer Waller
Haidong Zhu

Students

Rachel Elam
Stephen Elmore
Priya Patel
Wei Wang

Staff

Colleen Boyle, Joe Tkacz, Tina Creech, Jacob Looney, Celeste Williams

Participants & Families
Staff, Students & Volunteers