What dose of exercise reduces insulin resistance in children, and application to NAFLD

CATHERINE L. DAVIS, PHD

Professor of Pediatrics, Physiology & Graduate Studies Georgia Prevention Institute Medical College of Georgia Augusta University (formerly Georgia Regents U.) katie.davis@gru.edu

No conflicts of interest to disclose

In the past 12 months, I have had no relevant financial relationships with the manufacturer(s) of any commercial product(s) and/or provider(s) of commercial services discussed in this CME activity.

> NIH HL087923 P30 DK56336 Diabetes & Obesity Discovery Institute and Medical Scholars Program, Medical College of Georgia

PLAY PROJECT: How much does it take to reduce risk?

- Tested 2 doses of a daily after-school exercise program on diabetes risk (insulin resistance) in overweight, inactive children
 - 58% black 42% male
 - 85% obese 28% prediabetic
 - 0 vs. 20 vs. 40 min/day
 vigorous 3 mo. after-school
 aerobic exercise program

Random Assignment

Post-Testing after 3+ months of intervention

Oral glucose tolerance test

Insulin Area Under the Curve (AUC): insulin resistance

Visceral adipose tissue

AFTER-SCHOOL EXERCISE PROGRAM

- 8 months (5 days/week)
- Vigorous aerobic activities
 - Fun, simple games this was not PE
 - running games, jump rope, ball games
- Reward effort, not performance
 - Points for average HR>140 bpm
 - Small weekly prizes
- Transportation provided

Catherine L. Davis PhD 740

.

VARSITMEN

APPROACH

- Overweight and obese children
- Fun, simple games this was not PE
- Reward effort (heart rate) rather than performance (speed, skill)
- Convenient, no cost

Davis et al. *JAMA.* 2012;308(11):1103-1112

Fasting insulin

Baseline

Davis et al. JAMA. 2012;308(11):1103-1112

Posttest

VO₂ peak

Baseline

Davis et al. *JAMA*. 2012;308(11):1103-1112

Insulin AUC

Baseline

Davis et al. *JAMA.* 2012;308(11):1103-1112

** p<.01 vs control 3.6 --- Control 3.4 Low-dose High-dose 3.2 ** 3.0 P-trend = .002 2.8 ** 2.6 2.4 2.2 2.0 1.8

Matsuda index

Baseline

Davis et al. *JAMA.* 2012;308(11):1103-1112

Percent body fat

* p<.05 *** p<.001 vs control

Baseline

Davis et al. *JAMA.* 2012;308(11):1103-1112

Visceral fat

Baseline

Baseline

Davis et al. *JAMA*. 2012;308(11):1103-1112

BMI z-score

* p<.05 vs high-dose *** p<.001 vs control

Baseline

PLAY PROJECT IMPLICATIONS

- 20 min/d aerobic activity can reduce diabetes risk. *Could fit into school day*
 - Optimized PE (SPARK)
 - Classroom PA (Mahar 2006, Donnelly 2009, Kibbe 2011)
 - Recess with adult play leaders (Howe, 2012)
 - Power Up for 30! program led by Georgia SHAPE (georgiashape.org)
- 40 min/d will require after-school time

SMART Study questions

- Are these benefits unique to exercise interventions?
- Will this approach work to reduce risk for arteriosclerosis, NAFLD and NASH in overweight children?
- Would effects be greater over a longer period of time (School year vs semester; 8 vs 3 months)?

EXERCISE TRIALS WITH LIVER FAT OUTCOMES IN CHILDREN

- Mostly uncontrolled pre-post trials
 - Pacifico et al. 2013, Pozzato et al. JPGN 2010, Van der Heijden et al. 2010
- A few small randomized controlled trials in adolescents have mixed results
 - Lee et al. 2012 (45 obese teen boys)
 - aerobic or resistance exercise \downarrow liver fat
 - Lee et al. 2013 (44 obese teen girls)
 - aerobic, but not resistance exercise ↓liver fat
 <u>Why were genders analyzed separately?</u>
 - J. Davis et al. 2011 (38 overweight Latina teens)
 - no effect of combined aerobic/resistance exercise on liver fat

STUDY OBJECTIVE: SOLATE EFFECTS OF EXERCISE

- To compare cognitive effects of after-school exercise training (40 min/day over 8 months) vs a sedentary attention control condition in overweight children.
 - Effect of exercise per se
 - Intent-to-treat analyses
- Ancillary study: arterial stiffness (PWV), liver fat (MRI), liver stiffness (Fibroscan), inflammation (ALT, AST, CRP) outcomes

SEDENTARY CONTROL CONDITION

- Attention control
 - Different room in same building
 - Same buses, same snacks
 - Teachers rotated between conditions
- Sedentary recreation
 - Board games
 - Crafts
 - Teacher-led group activities
 - Points for cooperation, proper use of materials, clean up
 - Points calibrated so groups got equal rewards

SMART STUDY PARTICIPANTS

175 healthy overweight, sedentary 8-11 yr olds recruited from Augusta, GA schools

- 61% female, 87% Black
- $9.7 \pm 0.9 \text{ yrs}$
- BMI ≥ 85th percentile
 - 74% obese
 - BMI $26 \pm 5 \text{ kg/m}^2 (96 \pm 4 \text{ %ile})$
 - Percent body fat $38 \pm 7 \%$
 - Peak VO_2 30 ± 6 ml/kg/min
 - 92% Needs Improvement-Health Risk
- Groups similar at baseline

RESULTS

- 89% study retention rate at posttest (n = 155)
- Exercise group had 59% attendance rate
 - Heart rate average 161 \pm 7 beats/min
 - 6.8 ± 1.6 METs
 - 10 refused posttest
- Control group had 64% attendance rate
 - 10 refused posttest

Dixon Method (2-point) Fat-Water MRI (scaled to Lipoquant for interpretability)

Images courtesy of Dr. S. Reeder, U. Wisconsin Madison

Liver Stiffness via Transient Elastography

Fibroscan®, Echosens, Paris, France

- Liver stiffness measurement consists in creating an elastic shear wave within the liver, measuring its speed of propagation and calculating the corresponding stiffness expressed in kilopascals (kPa).

To do so, a probe is placed between the rib bones in proximity to the right lobe of the liver. The operator, assisted by a timemotion mode ultrasonic image, locates a 5cm deep portion of liver parenchyma free of large vascular structures. When the measurement is triggered, the vibrator gives a painless push to the tissue, creating an elastic shear wave.

Transient Elastography

THANK YOU!

Among Others...

Jerry Allison Reda Bassali **Jigar Bhagatwala** Yanbin Dong **Barbara Gower Bernard Gutin** Gaston Kapuku Sheldon Litwin Sudipta Misra Norman K. Pollock James Rawson Claude Sirlin Miriam Vos **Jennifer Waller** Haidong Zhu

Students

Rachel Elam Stephen Elmore Priya Patel Wei Wang

Staff

Colleen Boyle, Joe Tkacz, Tina Creech, Jacob Looney, Celeste Williams

Participants & Families Staff, Students & Volunteers

cadavis@gru.edu www.gru.edu/institutes/gpi/davis.php