Improving clinical practice through research: *Where are we going?*

Jorge A. Bezerra, M.D.

Conflict of interests

- Molecular Genetics Laboratory, CCHMC
 - Research funding
- Gilead
 - Principal Investigator: Anti-HBV Clinical Trial
 - Sub-Investigator: Anti-HCV Clinical Trials 1 & 2

Pediatric hepatology research

- Battling an epidemic: NAFLD research
- De-personalizing care: DAAV for HCV
- Personalizing care: Cholestasis syndromes
 - Recent advances
 - Tools for diagnostics and therapeutics
 - Research aims for 2020 20/20 clarity?
- Beyond 2020: Livers in a dish

Pediatric hepatology research

- Battling an epidemic: NAFLD research
- De-personalizing care: DAAV for HCV
- Personalizing care: Cholestasis syndromes
 - Recent advances
 - Tools for diagnostics and therapeutics
 - Research aims for 2020 20/20 clarity?
- Beyond 2020: Livers in a dish

Corticosteroids

M.

- Suggested as adjuvant therapy based on its anti-inflammatory effects (uncontrolled trials)
- Meta-analysis (Sarkhy et al. Can J Gastroenterol 2011) - 17 publications: Unable to determine efficacy
- Surveys of use of steroids after surgery ~~50% in US (Lao Am J Surg 2010)
 - ->90% in Japan (Muraji J Pediatr Surg 2004)

The START Trial

Lancet 2014;311:1750-9

- <u>START</u> <u>St</u>eroids in Biliary <u>A</u>tresia <u>R</u>andomized <u>T</u>rial
- Double blind, placebo-controlled (NCT00294684)
- To determine whether treatment with highdose steroids after HPE is superior to HPE
- 14 liver centers in the U.S. ChiLDREN

Intrahepatic cholestasis Recent advances • Genetics

• Old and new syndromes

Clinical Case

- Male infant, 11 months old
- History of transient neonatal jaundice
- Exam:
 - No dysmorphic features
 - Normal cardiac auscultation
- Laboratory studies
 - AST: 111 IU/L
 - Albumin: 3.7 g/dL – Alk Phos: 201
- ALT: 108 IU/L DBi: 2.8 mg/dL
- γGTP: 387 IU/L

Discoveries Genetic basis of liver disease			
Year, investigators	Disorder	Gene	
1969 - Sharp H et al.	A1AT deficiency	SERPINA1	
1998 - Oda T et al. Spinner NB et al.	Alagille syndrome	JAG1	
1998 - Bull LN et al.	PFIC-1, BRIC-1	ATP8B1	
1998 - Strautnieks S et al.	PFIC-2	ABCB11	
1996 - Deleuze JF et al. 1998 - de Vree JM et al.	PFIC-3	ABCB4	
1998 - Setchell K et al.	BASD, Reductase	AKR1D1	

Spectrum of syndrome FIC1 deficiency			
Year, investigators	Disorder	Gene	
1998 - Bull LN et al.	PFIC-1 BRIC-1	ATP8B1	
1999 - Tygstrup N et al.	RFIC Faeroe Is.	ATP8B1	
2000 - Klomp LW et al.	Greenland familial cholestasis	ATP8B1	
FIC1 deficier	NCY — → PFIC-1 → BRIC-1 → RFC/Fa → Greenla		

Spectrum of syndrome BSEP deficiency				
Year, investigators	Disorder	Gene		
1998 - Strautnieks S et al.	PFIC-2	ABCB11		
2004 - van Mill ST et al.	BRIC-2	ABCB11		
2006 - Knisely AS et al.	HCC	ABCB11		
2007 - Scheimann AO et al.	Cholangiocarcinoma	ABCB11		
BSEP—	PFIC-2 BRIC-2 HCC Cholangiocarcino	oma		

Identification of new PFIC gene Sambrotta M et al. Nat Genet Mar 9, 2014

Patient population

- 29 families, 33 affected individuals
- Chronic cholestasis
- Low GGT relative to cholestasis
- No mutation in ATP8B1 or ABCB11
- Mutation survey
 - Target screening: Sequencing of 21 genes
 - Whole exome sequencing
 - Confirmation by Sanger sequencing

Identification of new PFIC gene

Sambrotta M et al. Nat Genet Mar 9, 2014

- Mutations in <u>TJP2</u>
 - 8 families, 12 individuals (36%)
 - Deletions, splice site mutations
 - Predicted to abolish protein translation
- Phenotype of liver disease
 - Age at presentation: <3 months</p>
 - GGT: 15-109
 - OLT: 9 of 12 patients (1.5-10 yr)
 - 2 patients with stable PHTN (4 and 7 yr)
 - Unexplained hematoma; lung disease (?)

TJP2 Biology and disease phenotypes

Biology

- Cytosolic component of several classes of cellcell junctions
- Influences localization of junction components
- Patients: No TJP2 or CLDN1
- · Mutations in patients with hypercholanemia
 - Pruritus, fat malabsorption, no progressive liver disease
 - Homozygous missense mutations
- Broader phenotype: Progressive cholestasis

Intrahepatic cholestasis

Research goals for 2020

20/20 Clarity: Personalized care

- Diagnostics
- Therapeutics

4-PB in PFIC	
Hasegawa Y et al. OJRD 2	2014;9:89
Intractable pruritus; low-GGT PFIC	5
Diagnosis	
 Low mRNA and protein for FIC1 (ATE 	28B1)
 Heteroz (N=2) or homozygous (N=1) 	for ATP8B1
 4-PB: Escalating doses 150-500 n 	ng/kg/d
Pruritus ATX AS	T, ALT Bilirubin
Patient 1 $4 \rightarrow 2$ No \triangle N	Νο Δ Νο Δ
Patient 2 $4 \rightarrow 2$ No Δ N	Νο Δ Νο Δ
Patient 3 $4 \rightarrow 2$ No Δ N	Νο Δ Νο Δ

FIC1 deficiency and OLT

L-Hayastino A et al. Liv Transpl 2009;15:610

- Liver disease after liver transplantation
- N=11, ages: 1-18 yr
- Macrovesicular steatosis
 - 8 of 11
 - 7 progressed to steatohepatitis
- 6 developed bridging fibrosis; 2 with cirrhosis
- Refractory diarrhea: In all 8 with steatosis
- Steatosis and diarrhea improved with bile adsorptive therapy

BSEP deficiency and OLT

- Keitel V et al. Hepatology 2009;50:510
- Jara P et al. NEJM 2010;361:14
- Lin CH et al. Liv Transpl 2014;19:1403
- Alloimmune hepatitis after liver transplantation
 Low GTP-cholestasis at 5m-12yr after OLT
- Patient IgG recognizes BSEP
- Autoantibodies in serum: Recognized BSEP
- Treatment
- Increased immunosuppression
- IV IG, anti-CD20 antibodies, plasmapheresis

Hepatology of tomorrow

Beyond 2020

- Genomic pediatrics
 - Liver in a dish

Engineering of a human liver

=12271

LETTER

Vascularized and functional human liver from an iPSC-derived organ bud transplant Takanot Takebe¹², Keinke Seking¹, Masahir Engemun¹, Horyuki Kökle¹, Masahi Kimur¹, Takanot Ogert¹, Ran-San Zhang¹,

Takazori Takebe^{1,2}, Keisuke Sekine¹, Masahiru Enomura¹, Hiroyahi Kolke¹, Masahi Kimura¹, Takazori Ogaru¹, Ban-Ran Zhan Yasuharu Ueno¹, Yun-Wen Zheng¹, Natois Kolke^{1,2}, Shimuke Aoyama⁴, Yasuhisa Adach⁴ & Hideki Tanigachi^{1,2}

- Liver in a dish: Strategy to model human liver disease ?
- Liver in a bucket: Organoids to fulfill a functional deficit ?