

Learning Objectives

- To determine the prevalence and economic burden of gastroesophageal reflux (GER) in infancy
- To appropriately utilize diagnostic testing in the evaluation of infants with complicated GERD
- To understand the safety and outcome of current therapeutic approaches in the management infants with clinical GER

Variability in GERD Diagnosis Rates across the USA Hospital Pediatrics 2013

 Rates of GERD diagnosis in preterm infants varied dramatically across NICUs from 2.4% to 29.9%¹

(Each dot represents a data point with upper and lower 95% Cis)

Prevalence of Neonatal Anti-reflux strategies

- Clinical significance of GERD also evident from the 7-fold increase in use of acid suppressive medications
- ~ 48% (range, 10% to 90%) of premature neonates are being discharged on acid suppressive medications
- ~45 % of anti-reflux procedures are performed in infants

Malcolm et al. 2008 Pediatrics Clark et al. 2006 Pediatrics

GERD and Burden

- \$70,489 additional costs per discharge
 - 29.9 additional days in LOS

Lighter birth weights, age >7 days, Aged 28 to 33 weeks at birth, Non-Hispanic patients

Hospital Pediatrics 2013

Do infants have higher gastric acid production?

TABLE 1. Gastric acid secretion in infants and children after betazole stimulation

Mean age	Volume (mL/h)	Mean titratable acid (mEq/h)	Mean acid output (mEq/kg/h)
1 d	3.3	8.1	0.01
4 wk	3.1	26.4	0.02
12 wk	13.4	34.8	0.10
16 wk	44.0	41.6	0.17
24 wk	64.0	49.2	0.24
>4-9 yr	42.5	114.2	0.24
>11 yr to adults	143.2	91.2	0.19

Scand J Gastroenterol. 1967;2(3):209-213 JPGN 37(Suppl):S12-S16, 2003

How is GER received?

GER

- The retrograde movement of stomach contents into the esophagus
- Refluxate can be stomach acid, feeds, bile, gastric or pancreatic juices, or even air
- It can be a normal physiologic process that occurs throughout the day in healthy neonates, infants, children, and adults

GERD

- GERD occurs when GER causes symptoms
- It is a pathological process manifesting as:
 - Poor Oral Feeding
 - Poor weight gain
 - Aversion
 - Irritability/Pain
 - Swallowing Problems
 - Esophagitis
 - Hematemesis
 - ENT problems
 - airway symptoms (apnea, aspiration, recurrent pneumonia, chronic lung disease (CLD)

Jadcherla SR, Rudolph CD. NeoReviews 2005;6;e87-e98

How much is GER predictable with questionnaires, pH-metry, endoscopy and histology?

- Poor diagnostic accuracy of a clinical questionnaire (compared to pH monitoring and esophageal biopsy)
 - 100 infants suspected of having GER compared to 100
- A normal questionnaire score in 26% of those with confirmed GERD.
- The score was abnormal in 81% of infants with a normal biopsy and pH study result,

J Pediatr Gastroenterol Nutr 2005;40:210e5

Appropriate Use of the Upper GI Series to Evaluate for GERD Useful to detect anatomic abnormalities Intestinal malrotation (or non-rotation), hiatal hernia, achalasia, stricture Not a test to definitively diagnose reflux Many false positives and negatives (< 50% sensitive/specific) Intestinal malrotation in an 8 year-old with chronic vomiting and heartburn Stricture in a 13 year-old

vomiting. Previous diagnosis

The benefits of UGI in evaluating a patient with GERD

Table 2 Abnormal findings on the UGI study other than GER that affected the operative management

No. of patients (%	
22 (3.3)	
5 (0.76)	
2 (0.30)	
1 (0.15)	

J Pediatr Surg (2010) 45, 1169-1172

Normal values for non-acid reflux (n=46) Mousa, et al Curr Gastroenterol 2014

Slide 19

MH1

add graph Mousa, Hayat, 10/21/2014

Thickening formula Does not decrease GER indices p value Total apneas Central apneas 5 (0-21) 0.876 1 (0-21) 1.5 (0-12) 0.488 0.5 (0-6) 0 (0-8) 2 (0-12) 0.096 Obstructive apneas 0.638 Mixed apneas Pathological apneas 1.5 (0-10) 1 (0-5) 0.419 • some benefit to parents may result in - reducing the number of visible vomiting episodes, - possibly failure to thrive Dig Liver Dis. 2005;37(1):23-27 Neonatology. 2013;103(2):98-102

Frequent feedings

• BCT and ACT during each hour of the 3 hour feeding cycle

Postprandial Hour	BCT, s	ACT, s	P Value
1	26.2 ± 30.9 (18.7, 36.3)	218.4 = 716.7 (0, 7.4)	9
2	$15.3 \pm 23.0 \ (4.9, 21.7)$	$419.1 \pm 940.8 \ (0, 271.1)$.001
3	$13.5 \pm 24.1 \ (1.8, 18.0)$	589.6 ± 709.2 (432.4, 863.7)	<.0001
			$\overline{}$

- Caloric density and (feeding volume) did not change reflux burden in preterm infants
- Faster flow rates and shorter durations resulted in a higher reflux burden.
 JPEN, 2012;36(4):449-455 Omari et al, Gut 2002;51:475-479

Hypoallergenic formula

- Symptoms of milk protein intolerance are similar to reflux symptoms, including fussiness, regurgitation, arching, and colic
- A 2-week trial of a hypoallergenic formula has been suggested to treat symptoms of GER (NASPGHAN guidelines)

J Pediatr. 2012:161(3):476-481

Outcome of conservative therapy in 50 infants

- 78% of the study population improved
- 25% completely resolved to normal
- Individual symptoms of regurgitation, crying, and arching improved significantly

Orenstein SR, et al J Pediatr2008

Pharmacotherapy

Orenstein et al; J Pediatr 2009; 154:514-20

- Randomized, doubleblind, placebo-controlled study
- 162 infants with symptomatic GERD
- No differences between lansoprazole and placebo
- In percentage of feedings with crying episodes or duration of crying episodes averaged across feedings

Risks of using acid suppression medications in infancy Hospital Pediatrics 2013;3;16						
Study Author	Type of Study	Age	Location	Medications Investigated	Outcome Assessed	OR (95% CI)
Guillet et al ²⁷	Retrospective	Neonates	NICU	Ranitidine, famotidine, cimetidine	NEC	1.71 (1.34-2.19), P<.000
Terrin et aP ⁿ	Prospective	Neonates	NICU	Ranitidine	NEC, sepsis, pneumonia, UTI	Infections: 5.5 (2.9–10.4), P < .001 NEC: 6.6 (1.7–25), P = .00
Beck-Sague et al ²⁹	Prospective	Neonates	NICU	H ₂ antagonists	Bloodstream infection	2.9, P=.008
Rojas et al ³⁰	Prospective	Neonates	NICU	H ₂ antagonists	Nosocomial infection	3 (1.1-7.7)
Graham et al ^{p1}	Retrospective	Neonates	NICU	H ₂ antagonists or PPI	Gram-negative bacteremia	3.1 (0.96-10.2), P=.05
Bianconi et al ³²	Retrospective	Neonates	NICU	Ranitidine	Late-onset sepsis	6.99 (3.78-12.94), P < .00
Elward et al ²⁰	Prospective	≤18 y	PICU	H, antagonists	VAP	P=.006
Yildizdas et aP*	Prospective	Pediatric, age range not specified	PICU	Omeprazole, ranitidine, sucralfate	VAP	P=.963
Lopriore et al ²⁵	Retrospective	Pediatric, age range not specified	PICU	Ranitidine, sucralfate	VAP	-
Sharma et al ^{ne}	Prospective	1 mo-15 y	PICU	Ranitidine	VAP	P = .025
Singh-Naz et al ²⁷	Prospective	Pediatrics, age range not specified	PICU	H ₂ antagonists	Nosocomial infection	Univariate P< .0001
Canani et al ^{sa}	Prospective	4-36 mo	Pediatric GI centers	Omeprazole and ranitidine	Pneumonia, gastroenteritis	Pneumonia: 6.39 (1.38–29.7), P<.05 Gastroenteritis: 3.58 (1.87–6.86), P=.0
Orenstein et al ⁶	Prospective	28 d-12 mo	Primary care centers	Lansoprazole	Lower respiratory tract infection	P=.032
Turco et al ²⁰	Retrospective	1-18 y	Hospital	PPI, H, antagonist	C difficile colitis	1.2 (1.04-1.39), P=.000

Ranitidine is Associated With Infections, Necrotizing Enterocolitis, and Fatal Outcome in Newborns

	Not exposed to Ranitidine (n = 183)	Exposed to Ranitidine $(n = 91)$	Р
Overall infections, n (%)	18 (9.8)	34 (37.4)	<.001
Sepsis, n (%)	16 (8.7)	23 (25.3)	<.001
Pneumonia, n (%)	1 (0.5)	4 (4.4)	.043
Urinary tract infections, n (%)	1 (0.5)	7 (7.7)	.002

- Ranitidine use should be avoided in preterm infants.
- Ranitidine administration is associated with increased incidence of NEC (level 2b).

Terrin et al, Pediatrics 2012

Conclusion (1)

- GER is commonly diagnosed in the NICU, and in most of the cases, is a self-limited physiologic process
- Maturation of reflux protective mechanisms should be considered in evaluating for GER in the NICU
- Non-pharmacologic measures should be the first line therapy for GER
- A role for acid suppression exists in infants with evidence of esophagitis or with gastrointestinal tract bleeding

However...

Conclusion (2)

- Acid suppression therapy increases the burden of non-acid reflux and is associated with increased risk of NEC and infections
- If indicated, acid suppression therapy should be:
 - continued only with clear benefit,
 - monitored closely, and
 - discontinued empirically in consideration of maturational changes

Conclusion (3)

 Anti-reflux treatment should thus be individualized carefully in each patient to reduce the widespread use of acid suppression medications unless clear evidence of pathologic GER exists

