Role of the microbiome in NASH

October 24th, 2014 Marialena Mouzaki, MD MSc Assistant Professor, University of Toronto

Disclosures * Member of Nutricia's Speaker's Bureau

Microbiol Nutrient Met	a & Microbio abolism Inflammation	ta & /Fibrosis	SCFA / Bile Acids		Microbiota & NASH treatment	
Evidence of therapeutic potential						
Study	NASH model	Treatment		Effect		
Raso et al. J Nutr Biochem 2014	High-fat diet (rats)	L. paracacei arabinogala FOS	+ actan +	↓steatosis, inflammation, insulin resistance, intestinal permeability		
Wagnerberger et al. J Nutr Biochem 2013	Fructose (mice)	L. casei Shir	ota	↓steatosis, ALT and TLR4 activation in liver		
Okubo et al. Am J Physiol Gastrointest Liver Physiol 2013	Methionine-choline deficient diet (mice)	L. casei Shir	ota	↓ hepatic and colonic inflammation/fibrosis, serum LPS		
Ritze et al. PLoS One 2014	Fructose (mice)	L. rhamnosus GG		↓steatosis, ALT and improved duodenal tight-junction concentration		
Pachikian et al. Mol Nutr Food Res 2013	N-3 PUFA-depleted diet (mice)	FOS	FOS		♦steatosis and ↑GLP-1	
Endo et al. PLoS One 2013	Choline- deficient/L-amino acid defined diet	MIYAIRI 588 (butyrate producing)		 ◆steatosis, IR, improved tight- junction localization, ↑antioxidative enzymes 		

<page-header><page-header><text><section-header><section-header><section-header><section-header>

