Manipulationg Gut Bacteria To Prevent The Onset Of Celiac Disease A Paradigm of Multi-omics in Autoimmune Diseases

State Of The Art Research Lecture

NASPGHAN Annual Meeting- Washington DC October 7-11 2015

Alessio Fasano, M.D.

Mucosal Immunology and Biology Research Center

And Center for Celiac Research

Massachusetts General Hospital, Boston MA - U.S.A.

DISCLOSURES

- Alba Therapeutics: Co-founder and stock holder;
- Mead Johnson Nutrition: Sponsored research;
- Inova Diagnostics: Sponsored research;
- Regeneron: Sponsored research;
- Pfizer: Consultant

The Yin and Yang Between Tolerance and Immune Response Leading to Autoimmune Diseases

Several Cells Play a Role in Maintaining The Immune Homeostasis

Loss of Mucosal Immune Homeostasis

Chronic Inflammation-Autoimmunity

Adapted from P. Brandtzaeg, Beneficial Microbes 2010

The Hygiene Hypothesis

The Hygiene Hypothesis Has Been Recently Questioned

Improved Hygiene In Some Developing Countries Was Not Paralleled by Increased Autoimmune Diseases

A TRIO OF CAUSES

Three factors underlie celiac disease: an environmental trigger, a genetic susceptibility and, according to the author's research, an unusually permeable gut (*below*). The author suspects that the same basic triad contributes to other autoimmune diseases, although each disorder will have its own triggers and genetic components.

GENETIC PREDISPOSITION

Almost all patients harbor the genes *HLA-DQ2* or *HLA-DQ8*, or both. These genes give rise to proteins of the same name that display gluten fragments to immune system cells, which then direct an attack on the intestinal lining. Other genes are likely to be involved as well, but these additional culprits may differ from person to person.

LEAKY SMALL INTESTINE

In most people, links known as tight junctions "glue" intestinal cells together. In those with celiac disease, the junctions come apart, allowing a large amount of indigestible gluten fragments to seep into the underlying tissue and incite immune system cells. Treatments that reduced leakiness could potentially ease not only celiac disease but also other autoimmune disorders involving unusually permeable intestines.

Celiac Disease As A Unique Model of Autoimmunity

Depiction of the intestinal mucosa with emphasis on the factors involved in the development of celiac disease in individuals with HLA-DQ2/DQ8 positive

Fasano A; Scientific American Aug. 2009

Zonulin Gene Is Located on Chromosome 16

Chromosome 16 contains about 98 million bases, or some 3% of the human genome, encoding for ~1,300 genes.

Increased Prevalence Over Time in U.S.A. (in Line with Other Autoimmune Diseases)

During the past 35 years the true prevalence of CD in USA doubled every 15 years.

C. Catassi et al, Annal Med 2010;42:530-8.

The Epidemics Of Celiac Disease: Which Additional Factors are Driving this Epidemics?

- Quality of gluten: GE grains
- Quantity of gluten;
- Breast Feeding;
- Timing of gluten introduction
- Maturity of gut functions influencing Ag trafficking and handling:
 - GALT
 - PRRs
 - Mucous production
 - Barrier function
- Changes in microbiome composition.

ORIGINAL ARTICLE

Introduction of Gluten, HLA Status, and the Risk of Celiac Disease in Children

Elena Lionetti, M.D., Stefania Castellaneta, M.D., Ruggiero Francavilla, M.D., Ph.D., Alfredo Pulvirenti, Ph.D., Elio Tonutti, M.D., Sergio Amarri, M.D., Maria Barbato, M.D., Cristiana Barbera, M.D., Graziano Barera, M.D., Antonella Bellantoni, M.D., Emanuela Castellano, M.D., Graziella Guariso, M.D., Maria Giovanna Limongelli, M.D., Salvatore Pellegrino, M.D., Carlo Polloni, M.D., Claudio Ughi, M.D., Giovanna Zuin, M.D., Alessio Fasano, M.D., Ph.D., and Carlo Catassi, M.D., Ph.D., for the SIGENP (Italian Society of Pediatric Gastroenterology, Hepatology, and Nutrition) Working Group on Weaning and CD Risk

Published on October 2, 2014

Home Take Messages

- Window of tolerance concept (4-7 months best period to introduce baby food) not supported anymore;
- Breast feeding in general or introduction of gluten while breast feeding showed no protective effect on CD onset in at-risk infants;
- Early introduction (16 weeks) of gluten traces to potentially induce tolerance did not protect against CD in at-risk infants;
- Delaying the introduction of gluten in at-risk infants does not prevent CD but merely postpones its onset by approximately 8 months (significant difference at 2 years FU that disappeared by 5 years FU);
- GI infections during the first year of life seems influential in increased the risk of CD onset;
- High-risk HLA profiles seems to be the most influential factor predictor of increased risk of CD onset;
- The high prevalence of CD among the study cohort suggests that the CD epidemics continues.

The Epidemics Of Celiac Disease: Which Additional Factors are Driving this Epidemics?

- Quality of gluten;
- Quantity of gluten;
- Breast Feeding;
- Timing of gluten introduction
- Maturity of gut functions influencing Ag trafficking and handling:
 - GALT
 - PRRs
 - Mucous production
 - Barrier function
- Changes in microbiome composition.

- •The human gut harbors 10¹¹-10¹² bacteria per gram colonic content (>10¹⁴ total bacteria)
- Total bacteria outnumber human cells 10:1
- •Total bacterial genes outnumber human genes >150:1
- •>10,000 different species of bacteria are resident in the human intestinal microbiota (400-500 per person)

Which Factors are Driving This Autoimmunity Epidemics?

Role of Breastmilk

Impact of human milk glycobiome on the infant intestinal microbiota

Zivkovica AM, et al. PNAS 2011;108: 4653-58

Intestinal Flora Influences Postnatal Immune System Development

Development of the Human Infant Intestinal Microbiota

Chana Palmer¹, Elisabeth M. Bik², Daniel B. DiGiulio^{3,4}, David A. Relman^{2,3,4}, Patrick O. Brown^{5,6*}

- The earliest colonizers were often organisms predicted to be aerobes (e.g., Staphylococcus, Streptococcus, and Enterobacteria), whereas the later colonizers tended to be strict anaerobes (Eubacteria and Clostridia).
- The Bacteroides varied greatly from baby to baby in the timing of their first appearance, but were consistently present in nearly all babies by 1 y.
- Several other taxa, including Prevotella, Acinetobacter, Desulfovibrio, Veillonella, and Clostridium perfringens, tended to appear only transiently, sometimes appearing and disappearing repeatedly within a baby's first year of life.
- By the end of the first year of life, the microbial ecosystems in each baby had converged toward a profile characteristic of the adult GI tract.
- All these changes are mainly driven by nutritional variables

Proof of Concept of Microbiome-Metabolome Analysis and Delayed Gluten Exposure on Celiac Disease Autoimmunity in Genetically At-Risk Infants

Maria Sellitto^{1¤}, Guoyun Bai², Gloria Serena¹, W. Florian Fricke², Craig Sturgeon¹, Pawel Gajer², James R. White², Sara S. K. Koenig², Joyce Sakamoto², Dustin Boothe¹, Rachel Gicquelais¹, Deborah Kryszak¹, Elaine Puppa¹, Carlo Catassi^{1,3}, Jacques Ravel^{2*}, Alessio Fasano^{1*}

Infants genetically predisposed to CD were characterized by a low abundance of Bacteroidetes (undetectable to 1%) combined with abundance of Firmicutes.

The Real Story of Our Genetic Complexity:

We Inherit two Parallel Genomes

Human Genome:

Inherited from both parents, stable, never change in its composition

Microbiome:

Inherited from the mother, extremely dynamic, changes from individual to individual and in the same individual over time

Higher Risk of Celiac Disease After Elective Cesarean Delivery

Risk of celiac disease after cesarean delivery.

	Matched controls (%)	Celiac disease (%)	Odds ratio; 95% CI OR	P-value	Adjusted odds ratio*, 95% CI AOR	P-value
Cesarean delivery	5,766/53,887 (10.7)	1,299/11,749 (11.1)	1.04; 0.98-1.10	0.232	1.06; 0.99-1.13	0.074
Number of participants			65,636		65,493	
Emergency cesarean delivery [†]	2,136/41,699 (5.1)	444/8,827 (5.0)	0.99; 0.90-1.10	0.857	1.02; 0.92-1.13	0.749
Number of participants			50,526		50,415	
Elective cesarean delivery [†]	2,125/41,688 (5.1)	508/8,891 (5.7)	1.11; 1.01-1.22	0.027	1.15; 1.04-1.26	0.005
Number of participants			50,579		50,471	

Infants intestinal microbiome is influenced by mode of delivery

Bacterial dysbiosis as possible mechanism responsible of increased risk for celiac disease in children born by C-Section

Microbiome (140-fold Human Genome) **Dynamic**

Human Genome

(~30,000 genes) **Stable**

Metabonome

Clinical

Outcome

Ros Non-Specifics (Warrensensonersenson) 4Маскителения терез Migungue, Access #Missaurisani asun isa AND BUTTON W- Marina Wassessessessessessesses Wassersessessessessesses Migging appear #Yatanahaya Mara Maran, Jan. 177 WHITE PROPERTY AND ADDRESS OF W- none MADON DOWN #Marapharamy value and mindradia - W MEAN DOWN nundiauninun -VI alter princip #Yatan ada yakan 44 - - > 3/2 W- 1955 Dalah pika ANTONIA MARKET W- 1979 Date the great MICHAEL TOWNS HIPPOTE PROCESS

#Y ration ration, above, rate

AN AUGUSTUS AND ABOUT THE What make

W-mindindan

W. . Issued - 1972

W- 1955 Dallah grad

#Yatanaha yasan

W- OFFINANCE SEE

AND DESCRIPTION

HERE THERE

rasany Asart nya

ninaini -

nuninun

****** - * ******

W- 1975 The sale green

HINTER PROPERTY

ninnin i -

DUDBING THE

Arytida

STATE OF THE

Classic

Corbis.com

NMR Analysis

- Infants who developed autoimmune diseases during the time of the study had high levels of lactate combined with low levels of butyrate before the onset of the disease.
- During the active state of the disease (24 months) the same subjects showed an increase in butyrate production and a decrease in lactate, therefore suggesting that the acute phase of CD is characterized by a different metabolomic profile.

Intestinal Organoids

Organoids differentiate lysozyme positive cells (Paneth's cells)

DAPI MUC2 ZO1

Volcano Plot Representing 80 Stem Cell Related Genes Expression Profile Macro Array Expressed In Crypts of Acute CD vs. Healthy Subjects.

GENE	Fold Regulation	P-Value	
BCL9	-3.8523	0.042667	
ENG	-2.9705	0.045796	
EP300	-2.8446	0.010392	
FZD5	-3.4419	0.034942	
GLI1	-3.8191	0.019727	
GLI3	-2.7957	0.025196	
LIFR	-4.201	0.002577	
NFAT5	-2.6085	0.007741	
NOTCH4	-3.8858	0.029935	
PTCH1	-2.8943	0.032864	
SMAD3	-2.5416	0.039593	
SMAD4	-2.5196	0.015226	
SMAD9	-3.2394	0.011844	
SMO	-2.6312	0.045707	
TCF7L1	-4.0579	0.011192	
TGFBR3	-2.7477	0.011667	
ZEB2	-3.9196	0.044099	

How Mechanistically Link Microbiome/Metametabolome Profiles to Clinical Outcome Stem Cell Niche

Distribution of LGR5 positive cells in the intestinal crypt.

Gene Expression In Stem Cell Niche Using Gut Organoids

How Mechanistically Link Microbiome/Metametabolome Profiles to Clinical Outcome <u>Mucosal and Systemic Immune Functions</u>

PROTEIN LEVEL IN Treg cells STIMULATED WITH METABOLITES

Small Intestine

FOXP3 ∆2

FOXP3 FL

Celiac Disease Genomic Environmental Microbiome and Metabolomic Study

Hypothesis

Combination of introduction of gluten into the diet and particular microbiota composition of infants genetically at risk for CD activates specific metabolic pathways that can contribute to the loss of tolerance to gluten and to the onset of autoimmunity, as reflected by specific metabolomic

Working Hypothesis of the CD-GEMM Project

Acknowledgments

