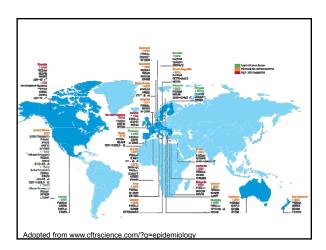
Advances in CF therapies and their effect on GI manifestations

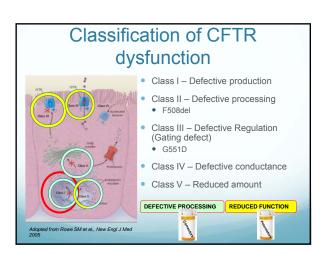
Daniel Gelfond, MD

University of Rochester
WNY Pediatric Gastroenterology

Presenter Disclosure Daniel Gelfond, MD

Relationship related to this presentation


Cystic Fibrosis Foundation Therapeutics grant support Vertex- Medical advisory board, consultant


Learning Objectives

- Outline pathophysiology of CF and impact of CFTR on clinical manifestations
- Recognize gastrointestinal manifestations of CF and therapeutic interventions
- Outline recent development and advances in CF therapy targeting specific genetic mutations
- Discuss role of Wireless Motility Capsule (WMC) as gastrointestinal biomarker of CFTR activity

Pathophysiology of Cystic Fibrosis

- Cystic fibrosis (CF) is a disease of dysfunctional Cystic Fibrosis Transmembrane Regulator protein (CFTR) inherited in autosomal recessive pattern (chromosome 7)
 - Channel controlling flow of Cl-, H₂O, HCO₃-
 - Dysregulation of fluid transport, increased viscocity in pulmonary, gastrointestinal (enteric, liver, pancreas) and reproductive organs
 - pH control through bicarbonate regulation
- ~ 2000 CFTR mutations identified
 - 127 are CF causing mutations (www.CFRT2.org)
 - (F508del ~88%)
 - 11 mutations in US with a frequency of >1%
 - 23 mutation with a frequency of >0.1%
- Severity of the mutations are based on the underlying mechanism causing CFTR dysfunction

How are organs affected by CFTR?

- Primary (luminal obstruction):
 - Skin (sweat gland)
 - Lung involvement with obstructive / restrictive respiratory disease
 - Gut involvement
 - CFTR present in a cephalad-caudal & crypt-villus gradient Reproductive tract
- Scondary (parencymal involvement):
 - Alveoli, pancreatic acini
 - Hepatic tissue

CFTR drives bicarbonate (HCO₃-) secretion

- · Drives ionic content & fluid flux on epithelial surfaces
- Facilitates dense mucins secreted by goblet cells to unfold by changing pH and interfering with Ca+ to become slippery
- Contribution to innate immunity
 - Trap microorganisms and facilitate defensins reaching the lumen
 - Antimicrobial protein activity is optimized at neutral pH
- large volume of bicarbonate secretions from mucosal epithelium, Brunners glands, ductal epithelium of pancreatic and biliary tracts is required to neutralize gastric acid
- · Pancreatic enzymes activity is pH dependent
- Micelle formation is pH dependent

Borowitz, Pediatr Pulmonolo2015 Oct;50 Suppl 40:2S4-S30

Impact of CFTR defect on GI pH

Decreased bicarbonate secretion

Lack of gastric buffering, leading to:

- **↓** Nutrient breakdown and absorption

 - Precipitation of micelles
- ◆ Hydration of the mucosa
- Prolonged small bowel acidification
- Immune dysregulation → altered microbiome

Boomerang of CF related GI disease

- Clinical features of CFTR dysfunction in GI tract precedes respiratory manifestations
 - In-utero onset with pancreatic destruction, early onset malabsorption, meconium ileus
- Aggressive nutritional intervention, PERT
- Patients no longer die of malnutrition
- Respiratory disease predominant cause of mortality
- Advancements in Respiratory therapy with antibiotics, new therapies → improved life expectancy
- With improved overall survival and optimization of pulmonary therapy emphasis changes to GI related complications of CF disease

Meconium Ileus (MI)

- Thick secretions in fetus → neonatal obstruction
- Incidence 13-17% among CF newborns*
 - More common common in infants with Class I-III mutations (F508del, G542X, W1282X, R553X, G551D)
 - Gene modifiers (4q35.1, 8p23.1, 11q25, 19q13) **
 - 53.5% of infants with MI are diagnosed with CF **
- Proposed pathophysiology:
- Defective ${\it HCO_3}$ excretion in utero likely causes acidic and dehydrated luminal environment
- Not related to lack of pancreatic enzymes (CF mouse model with MI has normal pancreatic function)

Treatment with enema irrigation vs. surgery

stroenterol Rep (2011) 13:265–270 R. et. al. Journal of Pediatric Gastroer

Distal Intestinal Obstruction Syndrome (DIOS)

- Viscid fecal material with strong adhesion to villi and crypts of the mucosa in the TI
 - No gene modifiers as seen in MI
 - More common in patients with prior history of MI
 - Possible pathophysiology:
 - Combination of inherent deficiency of luminal bicarbonate along with altered motility and pancreatic insufficiency
- Prevalence 7-8% in children; 14-16% in adults

Intestinal segment of a CF patient with obstruction

* Viscid fecal material with strong adhesions to the mucosa and crypts Yellow arrows = "constipated goblet cells"

DIOS

- Abdominal pain, vomiting and distention with palpable right sided mass and complete or partial obstruction
 - May mimic constipation & often occur concurrently
 - · Chronicity and distribution of stool on imaging
 - May mimic appendicitis
 - Incidence of appendicitis is NOT greater in CF vs. control
- Treatment mostly with osmotic stool laxatives (PEG)
 - N-acetylcysteine may be used as a mucolytic PO / PR
 - Gastrografin enema refluxed to terminal ileum
- Prevention: adherence to PERT and osmotic stool laxatives

CF related Pancreatic disease

- Pancreatic Insufficiency (PI)
 - 85% of CF patients cared for in US
 - In utero destruction of the pancreas in ~60% of newborns
 - "Plasticity" of pancreatic function in others may be an opportunity to improve and recover function with early intervention
 - Basis of Immunoreactive trypsinogen (IRT) –newborn screening
 - Lifelong Pancreatic Enzyme Replacement Therapy (PERT)
- Pancreatic sufficiency (PS)
 - 10-15% of CF subjects
 - Usually have at least 1 Class IV or V mutation
 - May develop PI
 - At risk of developing pancreatitis

Small Bowel Bacterial Overgrowth

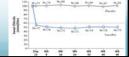
- Increased predisposition in CF patients
 - Thick secretions
 - Provide media for bacterial growth
 - Obstrutc secretion of luminal defensins from Paneth cells
 - Adhere to epithelial mucosa
 - Malabsorbed nutrients
 - Bacteria deconjugate bile acids
 - Altered intestinal motility with slow transit in the small bowel = intestinal stasis
 - ↑# of bacterial organisms in the upper GI tract
 - Chronic use of antibiotics

Therapy with enteric antibiotics, osmotic laxatives, (?probiotics)

Cystic Fibrosis Related Liver Disease (CFLD)

- Transient elevation of hepatic enzymes ≠ CFLD
 - 50% of young children and infants with CF
 - Normalizes within 2-3 years of age
- Spectrum of hepatobiliary disease
 - Cholelithiasis, biliary tract ductal stones, microgallbladder
 - Hepatic steatosis, nodular regenerative hyperplasia
 - Focal biliary cirrhosis and portal hypertension

Common GI diseases in CF patients


- GERD
 - 6-8 fold greater in CF population
 - Conventional therapy with acid suppression or more aggressive surgical interventions in complex disease
 - Long term therapy to improve PERT availability
- Constipation
 - Common in CF
- Increased incidence in CF population
 - Inflammatory Bowel Disease (second hit hypothesis)
 - Celiac disease 2-3 fold increase* (TTG might be false positive)
 - Gastrointestinal cancer in organs with higher CFTR expression

Fluge G., Co-morbidity of cystic fibrosis and celiac disease in Scandinavian cystic fibrosis patients. J Cyst Fibros 2009;8:198–202

Therapeutic approach to Class III Gating mutations

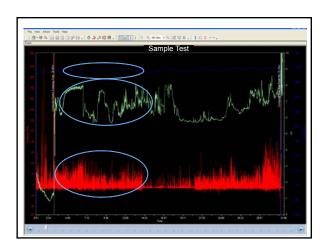
- Ivacaftor first mutation specific drug for CF (Approved by FDA Jan'12 for treatment of G551D, label now expanded to include other mutations)
 - nel Class III
 - CFTR potentiator that improves ion channel activity

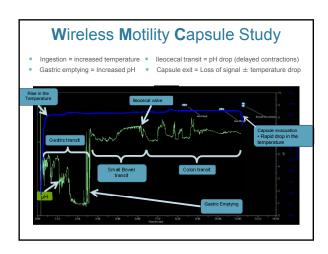
 - Lung function and
 - ◆pulmonary exacerbations
 - Improved nutritional status

Ramsey et al., N Engl J Med. 2011 Nov 3;365(18):1663-72

Therapeutic approach to Class II Folding mutations

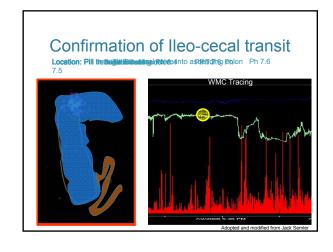
- Lumacaftor + Ivacaftor first combination therapy (approved by FDA July'15 for treatment of F508del/F508del)
- CFTR corrector + potentiator that improves ion channel activity
 - ↑ lung function and ↓ pulmonary exacerbations
 - No effect on sweat chloride
 - Modest improvement in nutritional status

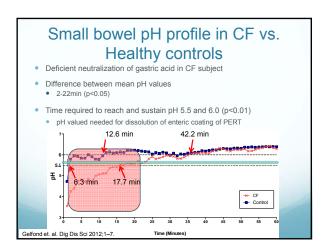


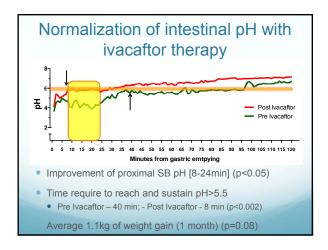

Wainwright et al., N Engl J Med. N Engl J Med. 2015 Jul 16;373(3):220-31

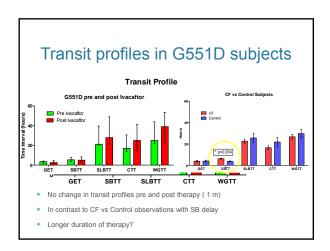
GOAL Study

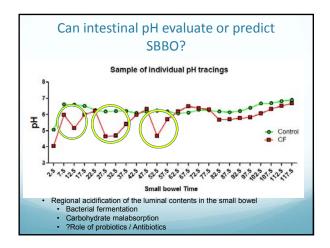
- Multicenter observational study of CF patients with G551D mutation before and after taking ivocaftor
 - Clinical and QOL outcomes, biomarker collection
 - Multiple sub-studies
- Nested study of Intestinal pH and motility
 - Evaluate intestinal pH parameters (indirect measure of luminal bicarbonate) before and one month after therapy with ivacaffor
 - Improvement of CFTR function hypothesized to improve CFTR dependent bicarbonate secretion








Gastric Emptying


Delineation of Ileo-cecal transit With capsule entering colon: Change in pH (-1) Change in frequency of contractions (♥)

Future directions

- Evaluate new modalities in the GI testing to guide clinical care and future research
 - • In vivo measurement of intestinal pH (HCO $_3$ -) as a biomarker of CFTR activity
 - Verified in Patients with G551D on ivacaftor
 - To be evaluated in F508del homozygotes on lumacaftor +ivacaftor
- Roles of CFTR therapy in non CF diseases
 - Pancreatitis
 - Intestinal dysmotility
- Translate lessons learned from CF animal models to patients