Functional Abdominal Pain: Implementing Nonpharmacologic Therapies into Your Practice

NASPGHAN 2015 – Miranda van Tilburg and Bruno P. Chumpitazi

Case Presentation

Objective 1: Review the efficacy of psychosocial therapies in children with functional abdominal pain (FAP) and learn how best to integrate these therapies into your practice

FAP is a brain-gut disorder and psychosocial factors play an important role in the occurrence and maintenance of symptoms. Common psychological therapies for children with FAP include:

- (1) Cognitive Behavioral Therapy (CBT): Changing maladaptive pain beliefs, teaching effective coping with pain and teaching relaxation exercises. Can be delivered to child alone, but better if delivered to both parent and child.
- (2) Hypnotherapy (HT): Also called guided imagery. Delivered to child alone, can be effectively delivered through self-exercises with audio recordings. Suggestions to reduce pain and increase well-being affecting body and mind.
- (3) Relaxation exercises: e.g., deep breathing, progressive muscle relaxation. These are often part of CBT or HT, but outside of CBT and HT are not very effective.
- (4) No evidence for psychodynamic treatment (focus on influence of past on present).
- (5) Evidence in adults for exposure therapy (a form of CBT): step-wise exposure to stimuli that cause GI distress combined with attention control and stress management.
- (6) Evidence in adults for Mindfulness: Evoking a non-evaluative state of present-moment awareness through attention shifting and breathing combined with release of thoughts of past and future. Often part of CBT but can be delivered alone.

Evidence

Do psychological treatments reduce pain?

Hypnotherapy	
Vlieger AM et al.	Yes; HT highly superior to standard medical care (n=53): 85% recovered in HT group
Gastroenterology 2007	vs 25% in standard medical care at 1 year follow-up. These differences persisted at
133:1430-6	5 year follow-up.
Vlieger AM et al.	
Am J Gastroenterol 2012	
107:627-31	
Van Tilburg MAL, et al.	Yes; highly superior: 63% of children in HT recovered vs 27% with standard medical
Pediatrics 2009	care (n=34). Increased quality of life and lower disability. Treatment effects
124:e890-7	maintained at 6 months follow-up.
Cognitive Behavioral Therapy	
Duarte et al	Yes: CBT superior to standard care (n=32) in pain frequency, but not intensity.
JPGN 2006	
43: 59-64	
Sanders et al	Yes: CBT superior to standard care (n=44): more pain free, fewer relapse, lower
J Consult Clin Psychol 1994	disability
62(2):306-314	
Robins et al	Yes: CBT superior to standard care (n=69): less pain, less school absences.
J Pediatr Psychol 2005	
30(5):397–408	
Levy et al	Yes: CBT superior to attention control (education) (N=200): Reductions in pain
Am J Gastroenterol 2010	intensity, gastrointestinal symptoms, disability and parental protective response.
105(4):946–956	Effects lasted up to 12 months.
JAMA Pediatr. 2013	

167(2):178–184	
Alfven and Lindstrom	Yes: CBT plus physiotherapy vs physiotherapy(n=48): No significant differences at 1
Acta Paediatr 2007	year follow up.
96(1):76–81	
Groβ and Warschburger	Yes: CBT superior to waitlist (n=29): reductions in pain intensity and duration. No
Int J Behav Med 2000	differences at 3 months follow-up.
20(3):434–443	
Levy et al	Yes: Parent-only CBT vs education reduces child gastrointestinal symptoms and
NASPGHAN 2015	disability up to 6 months after treatment

How to integrate

- 1) Psychologist, or master level therapist with appropriate training (e.g., LCSW)
 - a. Within your practice
 - b. Local to you: NASPGHAN referral list (NASPGHAN.org →professional education→ motility resources) American Society of Clinical Hypnosis (<u>http://www.asch.net/Public/MemberReferralSearch.aspx</u> American Psychology Association <u>http://locator.apa.org/index.cfm?event=search.text</u> Society of Pediatric Psychology Division 54 Pediatric Gastroenterology Interest Group (<u>http://www.apadivisions.org/division-54/sigs/gastroenterology/index.aspx</u>)

2) E-therapy

- a. Many therapists use skype (laws vary per state)
- b. Internet delivered CBT tested but not available outside research
- c. Audio-recorded hypnotherapy tested but not available yet. Scripts available for free to trained therapists contact: <u>tilburg@med.unc.edu</u>
- d. Audio-recorded guide imagery and relaxation exercises for chronic pain: <u>www.painretreat.net</u>

Objective 2: Review the efficacy of probiotics in children with FAP and how to use them

Probiotic: "Live" microorganisms which when administered in adequate amounts confer a health benefit on the host. (Guidelines for the evaluation of probiotics in food. Rome/Geneva: FAO/WHO; 2002)

Proposed mechanisms by which probiotics work

Thomas CM, Versalovic J. Gut Microbes 2010; 1:1-16.

<u>Evidence</u>

Does the gut microbiota composition differ between children with IBS and healthy controls?

Rigsbee, L et al. Am J	Yes; Differences in the abundances of several bacterial genera revealed in children
Gastroenterol 2012	(pre and adolescent) with IBS-D (n=22). Several "relationships" identified via
107:1740-51.	networking analysis.
Saulnier, DM et al.	Yes; Several differences in the abundances at the class and genus levels in children
Gastroenterology 2011	with IBS (n=22). There were also differences in composition to distinguish IBS
41:1782-1791	subtypes and pain severity groupings.

Several adult studies have demonstrated differences between those with IBS and healthy controls though the results have not been consistent (Rajilic-Stojanovic M, et al. *Am J Gastroenterol* 2015; 110:278-87.)

Bausserman M, et al. J Pediatr	Somewhat, Lactobacillus GG (10^{10} CFU bid x 6 weeks) did not decrease pain vs.
2005 147:197-201	placebo, but did decrease abdominal distention (N=50 IBS)
Gawronska A, et al. APT 2007	Yes, Lactobacillus GG (3x10 ⁹ CFU bid x 4 weeks) increased the likelihood of having no
25:177-184	pain at completion vs. placebo (25% vs. 9.6%), and decreased overall frequency of
	pain. More robust findings were found in those with IBS. (N=104 FAP)
Francavilla R, et al. Pediatrics	Yes, Lactobacillus GG (3x10 ⁹ CFU bid x 8 weeks) decreased pain during and over the
2010 126:e1445-52	course of a follow-up period vs. placebo in children with IBS N=141 (83 IBS, 58 FAP)
Guandalini S, et al. JPGN 2010	Yes, VSL#3 (one or two sachets daily x 6 weeks) decreased global score, pain,
51:24-30	abdominal bloating in a cross-over trial vs. placebo (N=59 IBS)
Romano C et al. J Paediatr Child	Somewhat, Lactobacillus reuteri DSM 17938 (2x10 ⁸ CFU bid x 4 weeks) decreased
Health 2014; 50:E68-71.	pain intensity but not frequency. (N=60 FAP)

Have probiotics demonstrated benefit in childhood FAP/IBS?

Objective 3: Review the efficacy of the low FODMAP diet in children with FAP and how to integrate it into your practice

What is the low FODMAP diet?

FODMAP stands for <u>fermentable oligosaccharides disaccharides monosaccharides and polyols</u>. This diet which restricts carbohydrates that may be difficult to absorb including fructose (fruit juices), lactose (dairy), fructans (wheat/onions), galactans (beans), and polyols (artificial sweeteners).

Emerging evidence in children

Chumpitazi B, et al. Gut	Yes, low FODMAP open label pilot trial x 1 week with overall decrease in pain
Microbes 2014 5:165-75.	frequency. 50% had marked decrease in abdominal pain frequency (N=8 IBS)
Chumpitazi B, et al. APT 2015 42:	Yes, low FODMAP vs. typical American diet x 48 hrs randomized, double-blind, cross-
418-27.	over study with overall group having decreased abdominal pain frequency on low
	FODMAP diet. Responders (n=8) identified with 50% or more decrease in abdominal
	pain frequency had a different gut microbiome composition prior to the start of the
	diet than those who did not respond. (N=33 IBS)

Several adult IBS studies have demonstrated low FODMAP diet efficacy (Halmos E, et al. *Gastroenterology* 2014; 146:67-75.)

How to integrate

- 1) Handouts
- 2) Registered dietitian
 - a. Within your practice
 - b. Local to you: <u>http://www.eatright.org/find-an-expert</u>
- 3) Mobile apps: <u>http://www.med.monash.edu.au/cecs/gastro/fodmap/iphone-app.html</u>
- 4) Social media: @MonashFODMAP (twitter)