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Genetic variation in IL28B predicts hepatitis C
treatment-induced viral clearance
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Chronic infection with hepatitis C virus (HCV) affects 170 million
people worldwide and is the leading cause of cirrhosis in North
America1. Although the recommended treatment for chronic
infection involves a 48-week course of peginterferon-a-2b
(PegIFN-a-2b) or -a-2a (PegIFN-a-2a) combined with ribavirin
(RBV), it is well known that many patients will not be cured by
treatment, and that patients of European ancestry have a signifi-
cantly higher probability of being cured than patients of African
ancestry. In addition to limited efficacy, treatment is often poorly
tolerated because of side effects that prevent some patients from
completing therapy. For these reasons, identification of the
determinants of response to treatment is a high priority. Here we
report that a genetic polymorphism near the IL28B gene, encoding
interferon-l-3 (IFN-l-3), is associated with an approximately
twofold change in response to treatment, both among patients of
European ancestry (P 5 1.06 3 10225) and African-Americans
(P 5 2.06 3 1023). Because the genotype leading to better response
is in substantially greater frequency in European than African
populations, this genetic polymorphism also explains approxi-
mately half of the difference in response rates between African-
Americans and patients of European ancestry.

To identify human genetic contributions to anti-HCV treatment
response, we have performed a genome-wide association study of
more than 1,600 individuals who were part of the IDEAL study2,
and we included a further 67 patients from another prospective treat-
ment study3. Briefly, the IDEAL study compared the effectiveness of
three treatment regimens involving PegIFN-a-2b or PegIFN-a-2a
combined with RBV. It demonstrated similar efficacy of the two
IFN preparations and a significantly lower efficacy in self-reported
African-Americans compared with Americans of European ancestry
(European-Americans). All patients included were treatment-naive
Americans who were chronically infected with genotype 1 HCV.
Patients received 48 weeks of treatment and 24 weeks of follow-up.
A total of 1,671 individuals were genotyped using the Illumina
Human610-quad BeadChip, and we then searched for determinants
of treatment response as a primary endpoint. We defined successful
treatment response and non-response according to standard defini-
tions4, concentrating on sustained virological response (SVR), which is
the absence of detectable virus at the end of follow-up evaluation
(Supplementary Information I). We included 1,137 patients who
satisfied stringent compliance criteria (Supplementary Information I)
in the analyses of treatment response, and 1,475 patients in a separate
analysis of baseline viral load.

We found that a polymorphism on chromosome 19, rs12979860,
is strongly associated with SVR in all patient groups (Fig. 1), with the

European-American population sample showing overwhelming
genome-wide significance (P 5 1.06 3 10225). Combining the P
values across the population groups, the variant shows association
at 1.37 3 10228. The polymorphism resides 3 kilobases (kb) up-
stream of the IL28B gene (Fig. 2), encoding IFN-l-3.

In patients of European ancestry, the CC genotype is associated
with a twofold (95% confidence interval 1.8–2.3) greater rate of SVR
than the TT genotype (Fig. 1), with similar ratios in both the African-
American (threefold, 95% confidence interval 1.9–4.7) and the
Hispanic (twofold, 95% confidence interval 1.4–3.2) population
groups. The magnitude of this association is compared in Table 1 with
other host or viral factors known to influence SVR in patients infected
with genotype 1 HCV, including baseline viral load, fibrosis and
ethnicity4,5. Not only does the IL28B polymorphism strongly influence
response within each of the major population groups, it also appears
to explain much of the difference in response between different
population groups (European-Americans compared with African-
Americans). We estimate that approximately half of the difference
in SVR between populations can be accounted for by the difference
in frequency of the C allele between African-Americans and indivi-
duals of European ancestry (Supplementary Information XI).
Interestingly, it has also been well documented that East Asians have
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Figure 1 | Percentage of SVR by genotypes of rs12979860. Data are
percentages 1 s.e.m.
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higher SVR rates than patients of European ancestry6,7. By looking at a
random multi-ethnic population sample with unknown hepatitis C
status (Supplementary Information II), we observed a substantially
higher frequency of the C allele in East Asians (Fig. 3). Collectively, the
SVR rates across different population groups displayed a striking
concordance with C-allele frequency (Fig. 3). Finally, it is also note-
worthy that African-Americans with the CC genotype have a signifi-
cantly higher rate of response (53.3%) than individuals of European
ancestry who have the TT genotype (33.3%, P , 0.05), which empha-
sizes the greater importance of individual genotype compared with
ethnicity in predicting treatment response8.

We next tested whether this variant influences baseline (pre-
treatment) viral load and found a significant association in all groups
(Supplementary Information XIII). Interestingly, the C allele, asso-
ciated with better treatment response, is also associated with higher
baseline viral load (CC 6.35, n 5 485; TC 6.33, n 5 744; TT 6.16,
n 5 246; P 5 1.21 3 10210; viral loads given as log10 international

units (IU) ml21). Although this finding is counter-intuitive in that
lower baseline viral loads predict a better response to treatment, it
could relate to recent speculation about the role of IFN-stimulated
genes in modulating response to PegIFN9, and it seems plausible
that the IL28B polymorphism has a role in the regulation of intra-
hepatic IFN-stimulated gene expression with consequences both for
viral load and treatment response (Supplementary Information
XIII). We also note that the polymorphism has no association with
whether individuals are classified as having baseline viral loads above
or below a commonly used threshold that predicts respectively worse
or better treatment response (Supplementary Information XIII),
indicating that the association of the polymorphism with clearance
and viral load may be independent. In addition, we note that the
C-allele frequency was significantly reduced in the chronically
infected cohort compared with ethnically matched controls (0.63
versus 0.73, controlled for population structure, P , 2.5 3 1026,
Supplementary Information II and XVI), which suggests an asso-
ciation between the C allele and a higher rate of natural clearance
of hepatitis C. We note, however, that determination of the precise
effect of the C allele on clearance will require comparison between
matched cohorts known to have and have not naturally cleared this
viral infection.

We sequenced the IL28B gene in 96 individuals, and found two
variants highly associated with rs12979860 (r2 . 0.85 for all compar-
isons in all populations): a G . C transition 37 base pairs (bp)
upstream of the translation initiation codon (rs28416813), and a
non-synonymous coding single nucleotide polymorphism (SNP)
(rs8103142) encoding the amino-acid substitution Lys70Arg. These
new variants were then genotyped in the full cohort. Owing to the
high degree of correlation among the three SNPs, tests for independ-
ence among these variants, using all available patients, were not able
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Figure 2 | Genomic overview of the region of 19q13.13 surrounding the
genome-wide significant determinant of response to treatment and
including the IL28B gene. The top panel shows a genome-wide view of the
P values [2log10(P)]. Panels below show all genotyped SNPs in the region of
significance and the structures of the surrounding genes. The SNPs that
show genome-wide significant association with SVR are marked in red. The
polymorphism rs12979860 (red arrow) is 3 kb upstream to the gene
encoding IFN-l-3 (IL28B, blue arrow). Other SNPs in the same region
showing genome-wide significant P values largely reflect the same signal
(Supplementary Information IX). The results were annotated using the
WGAViewer software19.

Table 1 | Comparison between the genetic and conventional clinical factors associating with SVR

Odds ratio (95% confidence interval)

European-Americans African-Americans Hispanics

IL28B rs12979860 genotype CC (versus CT and TT)* 7.3 (5.1–10.4) 6.1 (2.3–15.9) 5.6 (1.4–22.1)
Baseline viral load (,600,000 IU ml21 versus $600,000 IU mL21){ 4.2 (2.6–6.6) 5.1 (1.9–13.9) 2.4 (0.7–8.8)
Baseline fibrosis (METAVIR F0-2 versus F3-4){ 3.0 (1.8–5.1) 1.1 (0.3–5.2) 4.1 (0.7–25.5)

Ethnicity (European-Americans/African-Americans) 3.1 (2.1–4.7)

Odds ratios and 95% confidence intervals are generated from the logistic regression model.
*Corresponding relative risks for rs12979860: 2.0 (95% confidence interval 1.8–2.3) in European-Americans; 3.0 (95% confidence interval 1.9–4.7) in African-Americans; 2.1 (95% confidence
interval 1.4–3.2) in Hispanics.
{ In clinical practice it is customary to divide patients into high and low viral-load groups, reflecting a well-described threshold effect. The IDEAL trial used a threshold of 600,000 (ref. 2).
{ Fibrosis was scored by METAVIR stage on a baseline centrally evaluated liver biopsy2,18.
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Figure 3 | Rate of SVR and rs12979860 C-allele frequency in diverse ethnic
groups. The SVR rate in East Asians is adopted from Liu et al.7. Sample sizes
for C-allele frequency: n 5 61 (African-Americans); n 5 271 (European-
Americans); n 5 16 (Hispanics); n 5 107 (East Asians); sample sizes for SVR
rate: n 5 191 (African-Americans); n 5 871 (European-Americans); n 5 75
(Hispanics); n 5 154 (East Asians).
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to resolve which, if any, of these sites is uniquely responsible for the
association with SVR. Additional HCV-infected cohorts may help to
determine whether one of these SNPs, or any other SNP in the region,
is causal for the association, as the pattern of association suggests the
possibility of more than one functional variant in the region
(Supplementary Information IX). Ultimately, identification and elu-
cidation of the functional SNPs will depend on in-depth functional
studies.

Given the significant effect of the IL28B polymorphism on treatment
response, and its likely clinical relevance, it was considered important
to compare the magnitude of different predictors of response for the
patients studied here. We developed a logistic regression model that
related clinical predictors to response rates (Supplementary
Information XI). We noted that the regression model showed that
the CC genotype is associated with a more substantial difference in
rate of response than other known baseline predictors included in the
model.

It seems likely therefore that advance knowledge of host genotype
of patients infected with HCV could in the future become an import-
ant component of the clinical decision to initiate treatment with
PegIFN and RBV. Many important clinical questions remain. The
current data are specific to patients with genotype 1 infection. It will
therefore be necessary to evaluate the role of host IL28B genotype and
treatment response in other less common HCV genotypes. Novel
small molecules, including HCV protease inhibitors, are currently
being developed and may soon be used in combination with
PegIFN and RBV for the treatment of genotype 1 HCV10; the role
of the IL28B genotype in these novel treatment regimens should
therefore be investigated.

In conclusion, we have identified a polymorphism 3 kb upstream
of IL28B that is significantly associated with response to PegIFN and
RBV for patients with chronic genotype 1 HCV infection. The poly-
morphism explains much of the difference in response between
European-American and African-American patients. Given that the
polymorphism appears to associate with natural clearance as well as
treatment response, it seems likely that the gene product is involved
in the innate control of HCV. Indeed, IFN-ls have demonstrated
antiviral activity against genotype 1 HCV in vitro11 and in vivo12.
The IFN-l proteins, encoded by the IL28A/B and IL29 genes, were
first described in 2003 (refs 13, 14). These IFNs signal through a
unique receptor but appear to share a common downstream signal-
ling system with the type 1 IFNs, including IFN-a. These findings,
and further study of the functional mechanism underlying the IL28B-
response association, may help identify patients for whom therapy is
likely to be successful, and highlight the IFN-l signalling axis as a
potential target for novel antiviral drug development.

METHODS SUMMARY
Our primary association tests involved single-marker genotype trend tests

performed in three independent groups (European-Americans, n 5 871;

African-Americans, n 5 191; Hispanics, n 5 75; Supplementary Information

I), using logistic regression models for treatment response and linear regression

for baseline viral load (Supplementary Information VI). Association tests were

implemented in the PLINK software15, correcting for several clinical covariates,

including baseline (pre-treatment) HCV viral load and severity of fibrosis. Then

the association signals (P values) were combined using Stouffer’s weighted

Z-method16, correctly taking into account sample sizes, effect sizes and effect

directions in each population. This combined P value was then reported as the
main result, along with the P values in each ethnic group. A series of quality-

control steps resulted in 565,759 polymorphisms for the association tests. We

applied methods to assess copy number variants and tested the relation between

copy number variants and SVR. To control for the possibility of spurious

associations resulting from population stratification, we used a modified

EIGENSTRAT17 method and corrected for population ancestry within each group.

We assessed significance with a Bonferroni correction (Pcutoff 5 4.4 3 1028; see

Supplementary Information VIII for details).
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