# Fatty Liver Disease in Children 

## Faculty

Chair
Rohit Kohli MBBS, MS
Division Chief
Gastroenterology Hepatology/Nutrition Children's Hospital Los Angeles
Associate Professor of Pediatrics
Keck School of Medicine
University of Southern California
Los Angeles, CA

## Faculty

Stephanie H. Abrams MD, MS
Children's Gastroenterology MCSG
Miller Children's Hospital
Long Beach, CA
Marialena Mouzaki MD, MSc
Hospital for Sick Children
School of Medicine
University of Toronto
Toronto ON, Canada
Pushpa Sathya MD, BSc
Associate Professor of Pediatrics
Janeway Children's Health and
Rehabilitation Centre
Memorial University of Newfoundland
St. John's NL, Canada
Jeffrey B. Schwimmer MD
Director, Fatty Liver Clinic/Weight
and Wellness Center
Professor of Clinical Pediatrics
Rady Children's Hospital

## Faculty

## Continued

Shikha S. Sundaram MD, MSCI<br>Associate Professor of Pediatrics<br>Medical Director, Pediatric Liver Transplant Program<br>Children's Hospital Colorado<br>Aurora, CO<br>Miriam Vos MD, MSPH<br>Associate Professor of Pediatrics<br>Division of GI, Hepatology \& Nutrition<br>Emory University School of Medicine<br>Children's Healthcare of Atlanta<br>Atlanta, GA

Stavra A. Xanthakos MD, MS
Director, Steatohepatitis Center
Associate Professor, Department of Pediatrics
Cincinnati Children's Hospital Medical Center
Cincinnati, OH

## CME Reviewer

Elizabeth Yu MD
Assistant Clinical Professor Pediatrics
University of California
Rady Children's Hospital
San Diego, CA

## Disclosures

| Name | Role | Disclosure | Resolution |
| :--- | :--- | :--- | :--- |
| Rohit Kohli | Chair | Research Grant Site Principal Investigator for <br> Raptor \& Shire Pharmaceuticals <br> Speaker Bureau for Alexion, and Scientific <br> and Medical Advisory Bd. Member for Takeda | Restricted to best <br> available evidence <br> and ACCME content <br> validation statement |
| Stephanie H. Abrams | Faculty | Nothing to disclose | N/A |
| Marialena Mouzaki | Faculty | Nothing to disclose | N/A |
| Pushpa Sathya | Faculty | Nothing to disclose | N/A |
| Jeffrey B. Schwimmer | Faculty | Nothing to disclose | N/A |
| Shikha S. Sundaram | Faculty | Faculty | Nothing to disclose |
| Miriam Vos | Nothing to disclose | N/A |  |
| Stavra A. Xanthankos | Faculty | Stock in Proctor\& Gamble, Merck and Pfizer <br> and is a research Grant Site Principal <br> Investigator for Raptor Pharmaceuticals | Restricted to best <br> available evidence <br> and ACCCME content <br> validation statement |
| Elizabeth Yu | Faculty | Nothing to disclose | N/A |
| Richard Weimer | Faculty | Nothing to disclose | N/A |

## Pediatric Nonalcoholic Fatty Liver Disease (NAFLD)

## The NAFLD Umbrella

Fatty infiltration of the liver >5\% by imaging or histology
No significant alcohol intake
No genetic disease
No Medications that cause steatosis
Bland steatosis
Steatosis with inflammation, $\pm$ hepatocellular injury (ballooning), $\pm$ fibrosis
NAFLD with fibrosis
NAFL or NASH with periportal, portal, sinusoidal or bridging fibrosis
NAFLD with cirrhosis Cirrhosis in the setting of NAFLD

## Spectrum of Pediatric NAFLD in NASH Clinical Research Network

176 children from 8 clinical sites in US, mean age 12 (6-17 years)



Notably, mean BMI $33 \pm 5$, (range 18-58)
BMI percentile $99.1 \pm 0.8$ \%

## Clinical Features Associated with More Severe Pediatric NASH

- Abdominal obesity - $\uparrow$ waist circumference
- Insulin resistance, prediabetes, diabetes mellitus T2
- Race/ethnicity: Hispanic > White > Black
- Genetic polymorphisms (PNPLA3)
- $\uparrow$ Age (peri and post-pubertal)
- $\uparrow$ ALT (>80 U/L), plus $\uparrow$ AST and GGT
- Dyslipidemia ( $\uparrow$ triglycerides)

What are Future Implications for Children with NASH?

- NASH-related cirrhosis in the United States alone has increased 6 fold over the last decade in adults
- Now 2nd leading cause for liver transplantation (LT) in adults
- Most rapidly growing indication for LT related to HCC
- Although long-term outcome of children with NASH remains unknown, these trends in adults are worrisome


## Natural History NASH vs. NAFL



## Pediatric NAFLD

## Prevalence

## NAFLD - Prevalence in Children

- NAFLD is the most common cause of pediatric liver disease
- There are no studies describing the incidence of NAFLD in children



## NAFLD - Prevalence in Children Continued

- Prevalence of NAFLD parallels obesity
- 2.7 fold increase 1980's to current era



## NAFLD - Prevalence in Children

Continued

- The prevalence of NAFLD varies with the age of the child, gender, race/ ethnicity, and body mass index (BMI)
- There is an increased prevalence of NAFLD in children with certain risk factors such as pre-diabetes, type 2 diabetes, OSA and hypopituitarism



## NAFLD - Prevalence in Children

Continued

- Prevalence of NAFLD depends on:
- the population being screened (general population vs. high risk population)
- the screening method used (ALT, imaging, liver biopsy)



## NAFLD - Prevalence in Children

Continued


- $2-4$ years -0.7\%
-15-19-17.3\%
- Obese children by ALT elevation - 29-38\%

Welsh JA et al. J. Pediatr 2013;162 (3):496-500e1. Schwimmer JB et al. Pediatrics 2006;118(4):1388-93. Louthan MV et al. J Pediatr Gastroenterol Nutr 2005;41(4):426-9.


## NAFLD - Prevalence in Children <br> Continued



## - 11-22 years - 4 -fold increased risk for Hispanic children

- 10.2\% in Asian children
- $8.6 \%$ in white children
- $1.5 \%$ in black children


## NAFLD - Prevalence in Children

Comorbidities Associated with Higher Risk/ Severity of NAFLD

- Children with type 2 diabetes had a $48 \%$ prevalence of elevated ALT
- Obstructive sleep apnea (OSA) was associated with NASH in two pediatric studies, independently of BMI and standard metabolic risk factors
- Children with hypopituitarism have an increased risk of NAFLD/ NASH and even cirrhosis


## Summary- Prevalence

- The prevalence of pediatric NAFLD parallels the growing prevalence of obesity in children
- The prevalence of NAFLD varies with the population screened, level of risk, and modality used to detect NAFLD
- The prevalence of pediatric NAFLD is higher in certain subpopulations:
- Overweight/ obese children
- Males>Females
- Ethnicity: Hispanics>Asian>Caucasian>Black
- Pre-diabetes or type 2 diabetes
- Obstructive sleep apnea (OSA)
- Hypothalamic dysfunction/ hypopituitarism


## Pediatric NAFLD

Natural History


## Natural History: A Retrospective Look

5 pediatric subjects Initial liver Biopsy Mean Fibrosis Stage: 0.2

41 +/- 28 months


5 subjects Increased fibrosis on repeat liver biopsy Mean fibrosis Stage: 2

18 pediatric subjects Biopsy proven NASH

28 months

No change in fibrosis: 8/18 (44\%) Progression of fibrosis: 7/18 (39\%) Regression of fibrosis: $3 / 18$ (17\%)

## Natural History: A Prospective Look



Histologic improvements based on change in NAS activity score Mean change in ALT: -35

## Increased Mortality in Pediatric NAFLD

- 66 children
(mean age 13.9 years)
- Mean follow up: 6.4 years (Range 0.05-20 years)
- Total of 409 person years follow up
-4 events
- 2 patients died, 2 liver transplant
- Observed vs. expected survival - p<0.001



## Increasing Mortality in Pediatric NAFLD

- 229 adults with biopsy proven NAFLD compared to National Registry of Population Data
- NAFLD mortality: - Increased overall (HR 1.29)
-Cardiovascular (HR 1.55)
-HCC (HR 6.55)
- Infectious (HR 2.71)
-Cirrhosis (HR 3.2)


Number at risk

| Controls | 2286 | 2085 | 1818 | 387 |
| :--- | :---: | :---: | :---: | :---: |
| Case | 229 | 210 | 174 | 31 |

## Fibrosis and Increased Mortality

## - No increase in mortality with NAS 5-8

- No increase in mortality with fibrosis stage 0-2
- Fibrosis stage 3-4, irrespective of NAS with increased mortality (HR 3.3)

Total Number of Deaths



## Pediatric NAFLD: An Aggressive Phenotype?

Comparison of severely obese adults vs. adolescents at bariatric surgery ( $\mathrm{BMI} \geq 40$ )

| Histologic <br> Feature | Severely obese <br> adults (n=24) | Severely obese <br> adolescents (n=24) | $p$ value |
| :--- | :---: | :---: | :---: |
| Definitive NASH | $25 \%$ | $63 \%$ | 0.009 |
| Mean NAS | 2.5 | 3.3 | NS |
| Presence of <br> fibrosis | $29 \%$ | $83 \%$ | 0.002 |
| Mean fibrosis <br> score | 0.4 | 1.3 | 0.002 |

Select adolescents with NAFLD have more advanced disease than comparable adults

## Summary-Natural History

- Limited data, from small series
- Extrapolation of adult natural history studies may be insufficient
- Early onset of obesity
- Increased severity of obesity
- In utero exposure to maternal obesity and insulin resistance
- Delineation of clinical outcomes of pediatric NAFLD will require long term follow up of affected children into adulthood


## Pediatric NAFLD <br> Screening

## Upper Limit for ALT?

- Regional laboratories use local population for norms
- Do not exclude overweight/obese or other causes of liver disease
- Median ULN at children's hospitals $53 \mathrm{U} / \mathrm{L}$ (range 30-90)
- 95 percentile for ALT in healthy weight, metabolically normal, liver disease free, NHANES adolescent group (12-17 yrs)


## ALT 25.8 U/L for BOYS ALT 22.1 U/L for GIRLS

## Limitations of ALT

- Poor correlation with histology
- Some studies suggest AST, GGT better correlated with fibrosis
- ALT changes even with placebo!
- Fluctuations over time
- Cannot always differentiate between


## NASH



## Ultrasound

- Pros:
- Non-invasive
- Cons
- Low sensitivity/specificity particularly lower degrees of steatosis (not recommended for screening in NASPGHAN Guidelines)
- Cannot differentiate between

NASH


## Advanced Imaging

- Newer imaging techniques
- Ultrasound based
- Shear wave
- Radiofrequency impulse
- Magnetic Resonance based
- Elastography
- Spectroscopy

- Not widely available


## Recommendations-Screening

- Screening should be considered between 9 and 11 years for:
- Children (BMI $\geq 95$ th percentile)
- Children (BMI $\geq$ 85th and 94th percentile) with additional risk factors
- Central adiposity, insulin resistance, prediabetes or diabetes, dyslipidemia, sleep apnea, or family history of NAFLD/NASH


## Recommendations-Screening

Continued

- Earlier screening can be considered in younger patients with risk factors such as severe obesity, family history of NAFLD/NASH, or hypopituitarism
- Consider screening of siblings and parents of children with NAFLD if they have known risk factors for NAFLD


## Recommendations-Screening

Continued

- Best test currently- ALT
- Sex-specific upper limits of normal in children (22 U/L for girls and $26 \mathrm{U} / \mathrm{L}$ for boys)
- Persistently (>3 months) elevated ALT more than twice the upper limit of normal should be evaluated for NAFLD
- ALT of $>80 \mathrm{U} / \mathrm{L}$ warrants increased clinical concern and timely evaluation


## Recommendations-Screening

Continued

- Clinically available routine ultrasound is not recommended as a screening test for NAFLD
- Follow up screening recommended
-Repeating ALT every 2 to 3 years if risk factors remain unchanged
-Consider repeating screening sooner if clinical risk factors of NAFLD increase


## Pediatric NAFLD <br> Diagnosis

## Diagnosis of Exclusion

## Other causes of hepatic steatosis need to be excluded

| Genetic/Metabolic <br> disorders | Medications | Dietary <br> causes | Infections |
| :--- | :--- | :--- | :--- |
| LAL-D | Corticosteroids | Alcohol | Hepatitis C <br> (genotype 3) |
| FACD, citrin deficiency | Amiodarone | Rapid weight loss <br> e.g., surgical |  |
| Wilson's disease | Methotrexate | Parenteral nutrition <br> Protein-energy <br> malnutrition |  |
| Lipodystrophies | Antipsychotics | Antidepressants |  |
| Abeta-/hypobeta- <br> liproproteinemia | HAART |  |  |
| Uncontrolled diabetes |  |  |  |

## How to Diagnose?

## Imaging modalities



# Liver <br> biopsy 

# Portal Predominant NASH in Many Pediatric Patients, Rarely in Adults 



Typical adult pattern


Zone 3 centered injury, more ballooning

## Assessment of Steatosis

## - Liver biopsy

- Traditionally used to quantify steatosis
- Steatosis in $>5 \%$ of hepatocytes is abnormal
- NAFLD Activity Score (NAS)
- Research: steatosis grading 0-3
- Imaging
- Investigative ultrasonography
- MR-based technologies



## Cost and availability limit their use

## Diagnosing NASH

## Cannot distinguish NAFL from NASH

- Obesity severity
- Degree of metabolic dysregulatin
- Bloodwork (ALT, keratin 18, etc.)
- NASH more common in those with ALT>80 U/L
- Panhypopituitarism, T2DM associated with NASH

Can confirm NASH

- Liver biopsy
- $>2 \mathrm{~cm}$ length $\uparrow$ likelihood of accurate classification
- NAS score (research) used to rate severity


## Liver Biopsy Considerations

- Safe in children, even if overweight
- Extreme obesity: consider involving interventional radiology
- Optimal timing of biopsy
- Not established
- Shared decision with family
- Biopsy can be helpful to identify:
- Other liver diseases
- Advanced NAFLD


## Determining the Presence of Fibrosis - Biomarkers

## Parameter ALT for >F2

- ALT $\geq 80$ predicts advanced fibrosis (F3/F4) -sensitivity 76\%; specificity 59\%
- AST/PLT; hyaluronic acid; other biomarkers: remain to be validated in children


## Benefits and Limitations of Each Diagnostic Approach



Serum Biomarkers
$\square$ Non-invasive
$\square$ Cheap

## Imaging Modalities

$\square$ Non-invasive
$\square$ Imaging of entire liver

- Can exclude certain conditions
$\square$ Cost varies

Liver Biopsy
Invasive
Samples a small fraction of the liver

## Serum Biomarkers

Often have low sensitivity/specificity
Some remain to be validated

## Imaging Modalities

U U/S has low sensitivity/specificity
CT exposes to radiation
V MRI/MRS: diagnostic cutoffs unclear

## Determining the Presence of Fibrosis - Imaging

- Pediatric literature limited
- Small sample size
- Few patients with advanced fibrosis
- Transient Elastography
- ROC $=0.79-1.00$ to predict $\geq F 2$
- Magnetic Resonance Elastography
- ROC = 0.92
- Scanner and reader dependent

Further validation studies are required

## Recommendations

- Exclude other liver diseases when evaluating a patient with suspected NAFLD
- Consider liver biopsy in children at risk of NASH and/ or advanced fibrosis
- Ultrasound is not recommended to determine or quantify steatosis due to poor sensitivity/specificity
- CT not recommended for quantification of steatosis due to exposure to radiation


# Pediatric NAFLD <br> Treatment 

## Goals of Treatment

## 1. Regression of NAFLD

- Defined as decrease in steatosis, inflammation, or fibrosis

2. Resolution of NASH

- These goals are defined and determined by liver histology


## Liver Histology

- Assessment of change in fibrosis over time is reasonable as a treatment outcome in children over longer time periods ( $\geq 2$ years) and currently requires a liver biopsy for staging


## Surrogate Markers of Treatment Response

- ALT
- Decrease in ALT is associated with improvements in NAFLD, but how much of a change is meaningful for a given individual is still to be determined


## Surrogate Markers: Imaging

- Ultrasound


## - Not reliable

- MRI


## - Promising <br> - Needs validation as a measure of change

## Other Treatment Goals

- Decrease in adiposity
- Improvement
- Dyslipidemia
- Insulin resistance
-Blood pressure


## Potential Treatment Options

- Lifestyle
- Dietary supplements
- Medications
- Surgery


## Lifestyle Modifications

- Lifestyle modifications to improve diet and increase physical activity are $1^{\text {st-line }}$ treatments for all children with NAFLD


## Lifestyle Targets

- Avoid sugar-sweetened beverages
- Healthy, well-balanced diet
- Moderate to vigorous exercise
- Limit screen time to < 2 hours per day


## Medications for NAFLD

- No currently available medications or supplements are recommended to treat NAFLD
- Bariatric surgery may be considered for selected adolescents with

\author{

- BMI $\geq 35 \mathrm{~kg} / \mathrm{m}^{2}$, who have <br> - non-cirrhotic NAFLD <br> - Absence of other serious comorbidities
}


# Pediatric NAFLD 

Extrahepatic Associations

## Cardiovascular Disease (CVD)

- Adult studies:
- CVD is the leading cause of mortality in patients with NAFLD
- NAFLD associated with CVD independent of BMI and other metabolic syndrome components


## Pediatric Data

- Dyslipidemia is common
- Suggestive of insulin resistance ( $\uparrow$ TG, $\sqrt{ }$ HDL)
- Early atherosclerosis seen in adolescents with NAFLD using surrogate markers and/or autopsies


## Impact of Treatment

## - Treating dyslipidemia in the context of NAFLD:

- No data on hepatic impact of dyslipidemia treatment
- Treating NAFLD - impact on dyslipidemia:
- TONIC: NASH resolution associated with improvement in cholesterol, not TG
- DHA superior to placebo for TG improvement
- Low fructose diet improved oxidized LDL


## Screening for Dyslipidemia

## - As per published guidelines:

## 2-8 years old

- If risk factors exist
- If family history of dyslipidemia/CVD


## 9-11 years old

## - Universal screening

## Hypertension

## - Increased risk of hypertension in children with NAFLD and obesity vs. obesity alone

- Treatment recommendations as per guidelines for overweight children


## CVD Recommendations

- Children with NAFLD:
- Should be screened for dyslipidemia at diagnosis and periodically, as per published guidelines
- Should have their blood pressure monitored


## Insulin Resistance and Diabetes Mellitus

- Increased risk of NASH if NAFLD with:
- Insulin resistance (OR: 1.8)
- Diabetes mellitus (OR: 2.6)
- Correlation between hepatic fat and prevalence of insulin resistance
- Baseline fat content predicts long-term ( $\sim 2 y$ ) insulin sensitivity


## Diabetes Recommendations

- Screen annually or sooner if clinical concern
- Screen using:
-Fasting glucose
- HgbA1c
- OGTT if above suggest pre-diabetes


## Obstructive Sleep Apnea (OSA)

- OSA affects > $50 \%$ of children with NAFLD
- Independent of BMI and metabolic syndrome, OSA is associated with:
- NASH
- Advanced fibrosis
- Increased \% of time with $\mathrm{SaO}_{2} \leq 90 \%$ relates to: - Hepatic necroinflammation and steatosis
- Elevated transaminase levels


# Pediatric NAFLD <br> Unanswered Questions and Research Priorities 

## Unanswered Questions and Research Priorities

- Natural history of NAFLD starting in childhood
- Risk factors in childhood NAFLD that predict progression to cirrhosis and HCC
- Non invasive diagnostics
- Longitudinal studies of biomarkers and imaging


## Unanswered Questions and Research Priorities

- Treatment questions:
- Role of dietary interventions
- Type and duration of exercise
- Validation of promising therapeutics
- Role of weight loss surgery
- Cost effectiveness and public health questions:
- Effective prevention strategies
- Cost effectiveness of screening, diagnosis and follow up


## Future Directions

- Improvement in understanding of the disease will lead to improved outcomes
- As pediatricians, prevention is a priority but not yet a focus for funding
- Collaborative efforts exist nationally and internationally
- NASPGHAN NAFLD Scientific Advisory Board
- The Liver Forum
- NIH sponsored NASH Clinical Research Network
- Industry supported Natural History studies
- These are all opportunities to get involved!

