Fatty Liver Disease in Children

Faculty

Chair

Rohit Kohli MBBS, MS

Division Chief
Gastroenterology Hepatology/Nutrition
Children's Hospital Los Angeles
Associate Professor of Pediatrics
Keck School of Medicine
University of Southern California
Los Angeles, CA

Faculty

Stephanie H. Abrams MD, MS
Children's Gastroenterology MCSG
Miller Children's Hospital
Long Beach, CA

Marialena Mouzaki MD, MSc

Hospital for Sick Children
School of Medicine
University of Toronto
Toronto ON, Canada

Pushpa Sathya MD, BSc

Associate Professor of Pediatrics
Janeway Children's Health and
Rehabilitation Centre
Memorial University of Newfoundland
St. John's NL, Canada

Jeffrey B. Schwimmer MD

Director, Fatty Liver Clinic/Weight and Wellness Center Professor of Clinical Pediatrics Rady Children's Hospital San Diego, CA

Faculty *Continued*

Shikha S. Sundaram MD, MSCI

Associate Professor of Pediatrics
Medical Director, Pediatric Liver
Transplant Program
Children's Hospital Colorado
Aurora, CO

Miriam Vos MD, MSPH

Associate Professor of Pediatrics
Division of GI, Hepatology & Nutrition
Emory University School of Medicine
Children's Healthcare of Atlanta
Atlanta, GA

Stavra A. Xanthakos MD, MS

Director, Steatohepatitis Center Associate Professor, Department of Pediatrics Cincinnati Children's Hospital Medical Center Cincinnati, OH

CME Reviewer Elizabeth Yu MD

Assistant Clinical Professor Pediatrics University of California Rady Children's Hospital San Diego, CA

Disclosures

Name	Role	Disclosure	Resolution
Rohit Kohli	Chair	Research Grant Site Principal Investigator for Raptor & Shire Pharmaceuticals Speaker Bureau for Alexion, and Scientific and Medical Advisory Bd. Member for Takeda	Restricted to best available evidence and ACCME content validation statement
Stephanie H. Abrams	Faculty	Nothing to disclose	N/A
Marialena Mouzaki	Faculty	Nothing to disclose	N/A
Pushpa Sathya	Faculty	Nothing to disclose	N/A
Jeffrey B. Schwimmer	Faculty	Nothing to disclose	N/A
Shikha S. Sundaram	Faculty	Nothing to disclose	N/A
Miriam Vos	Faculty	Nothing to disclose	N/A
Stavra A. Xanthankos	Faculty	Stock in Proctor& Gamble, Merck and Pfizer and is a research Grant Site Principal Investigator for Raptor Pharmaceuticals	Restricted to best available evidence and ACCME content validation statement
Elizabeth Yu	Faculty	Nothing to disclose	N/A
Richard Weimer	Faculty	Nothing to disclose	N/A

Pediatric Nonalcoholic Fatty Liver Disease (NAFLD)

The NAFLD Umbrella

	4	
nan	MTV	pes
	ULY	

NAFLD

(covers spectrum)

Fatty infiltration of the liver >5% by imaging or histology

No significant alcohol intake

No genetic disease

No Medications that cause steatosis

NAFL Bland steatosis

NASH Steatosis with inflammation, ± hepatocellular

injury (ballooning), ± fibrosis

NAFLD with fibrosis NAFL or NASH with periportal, portal, sinusoidal or

bridging fibrosis

Spectrum of Pediatric NAFLD in NASH Clinical Research Network

176 children from 8 clinical sites in US, mean age 12 (6-17 years)

Notably, mean BMI 33 ± 5, (range 18-58) BMI percentile 99.1 ± 0.8 %

Clinical Features Associated with More Severe Pediatric NASH

- Abdominal obesity
 † waist circumference
- Insulin resistance, prediabetes, diabetes mellitus T2
- Race/ethnicity: Hispanic > White > Black
 - Genetic polymorphisms (PNPLA3)
- ↑ Age (peri and post-pubertal)
- ↑ ALT (>80 U/L), plus ↑AST and GGT
- Dyslipidemia († triglycerides)

What are Future Implications for Children with NASH?

- NASH-related cirrhosis in the United States alone has increased 6 fold over the last decade in adults
 - Now 2nd leading cause for liver transplantation (LT) in adults
 - Most rapidly growing indication for LT related to HCC
- Although long-term outcome of children with NASH remains unknown, these trends in adults are worrisome

Natural History NASH vs. NAFL

Pediatric NAFLD

Prevalence

- NAFLD is the most common cause of pediatric liver disease
- There are no studies describing the incidence of NAFLD in children

Continued

- Prevalence of NAFLD parallels obesity
- 2.7 fold increase 1980's to current era

Continued

- The prevalence of NAFLD varies with the age of the child, gender, race/ ethnicity, and body mass index (BMI)
- There is an increased prevalence of NAFLD in children with certain risk factors such as pre-diabetes, type 2 diabetes, OSA and hypopituitarism

Continued

- Prevalence of NAFLD depends on:
 - the population being screened (general population vs. high risk population)
 - the screening method used (ALT, imaging, liver biopsy)

Continued

- 2-4 years 0.7%
- **15-19 17.3%**
- Obese children by ALT elevation 29-38%

Welsh JA et al. *J. Pediatr* 2013;162 (3):496-500e1. Schwimmer JB et al. *Pediatrics* 2006;118(4):1388-93. Louthan MV et al. *J Pediatr Gastroenterol Nutr* 2005;41(4):426-9. Strauss RS et al. *J Pediatr* 2000;136(6):727-33. Rehm JL et. *J Pediatr* 2014;165(2):e1. Patton HM et al. *J Pediatr Gastroenterol Nutr* 2006;43:413-427.

Continued

- 11-22 years 4-fold increased risk for Hispanic children
- 10.2% in Asian children
- 8.6% in white children
- 1.5% in black children

Welsh JA et al. *J. Pediatr* 2013;162 (3):496-500e1. Schwimmer JB et al. *Pediatrics* 2006;118(4):1388-93. Louthan MV et al. *J Pediatr Gastroenterol Nutr* 2005;41(4):4. Strauss RS et al. *J Pediatr* 2000;136(6):727-33. Rehm JL et. *J Pediatr* 2014;165(2):e1. Patton HM et al. *J Pediatr Gastroenterol Nutr* 2006;43:413-427.

Comorbidities Associated with Higher Risk/ Severity of NAFLD

- Children with type 2 diabetes had a 48% prevalence of elevated ALT
- Obstructive sleep apnea (OSA) was associated with NASH in two pediatric studies, independently of BMI and standard metabolic risk factors
- Children with hypopituitarism have an increased risk of NAFLD/ NASH and even cirrhosis

Summary- Prevalence

- The prevalence of pediatric NAFLD parallels the growing prevalence of obesity in children
- The prevalence of NAFLD varies with the population screened, level of risk, and modality used to detect NAFLD
- The prevalence of pediatric NAFLD is higher in certain subpopulations:
 - Overweight/ obese children
 - Males>Females
 - Ethnicity: Hispanics>Asian>Caucasian>Black
 - Pre-diabetes or type 2 diabetes
 - Obstructive sleep apnea (OSA)
 - Hypothalamic dysfunction/ hypopituitarism

Pediatric NAFLD

Natural History

Natural History: A Retrospective Look

5 pediatric subjects Initial liver Biopsy Mean Fibrosis Stage: 0.2

41 +/- 28 months

5 subjects
Increased fibrosis on
repeat liver biopsy
Mean fibrosis Stage: 2

18 pediatric subjects Biopsy proven NASH

28 months

No change in fibrosis: 8/18 (44%)
Progression of fibrosis: 7/18 (39%)
Regression of fibrosis: 3/18 (17%)

Natural History: A Prospective Look

TONIC trial

Vitamin E vs. Metformin vs. Placebo

Placebo control (n=47)

Nutrition and Physical Activity

NASH resolution (28%) Fibrosis improvement (40%)

Mean change -0.2

Steatosis improvement (40%)

Mean change -0.4

Lobular inflammation improvement (43%)

Mean change -0.3

Histologic improvements based on change in NAS activity score Mean change in ALT: -35

Increased Mortality in Pediatric NAFLD

- 66 children (mean age 13.9 years)
 - Mean follow up: 6.4 years (Range 0.05-20 years)
 - Total of 409 person years follow up
 - 4 events
 - 2 patients died, 2 liver transplant
 - Observed vs. expected survival - p<0.001

Increasing Mortality in Pediatric NAFLD

 229 adults with biopsy proven NAFLD compared to National Registry of Population Data

NAFLD mortality:

- -Increased overall (HR 1.29)
- Cardiovascular (HR 1.55)
- -HCC (HR 6.55)
- -Infectious (HR 2.71)
- -Cirrhosis (HR 3.2)

Fibrosis and Increased Mortality

- No increase in mortality with NAS 5-8
- No increase in mortality with fibrosis stage 0-2
- Fibrosis stage 3-4, irrespective of NAS with increased mortality (HR 3.3)

NASPGHAN

©2017 NASPGHAN FOUNDATION

Pediatric NAFLD: An Aggressive Phenotype?

Comparison of severely obese adults vs. adolescents at bariatric surgery (BMI ≥40)

Histologic Feature	Severely obese adults (n=24)	Severely obese adolescents (n=24)	p value
Definitive NASH	25%	63%	0.009
Mean NAS	2.5	3.3	NS
Presence of fibrosis	29%	83%	0.002
Mean fibrosis score	0.4	1.3	0.002

Select adolescents with NAFLD have more advanced disease than comparable adults

Summary-Natural History

- Limited data, from small series
- Extrapolation of adult natural history studies may be insufficient
 - Early onset of obesity
 - Increased severity of obesity
 - In utero exposure to maternal obesity and insulin resistance
- Delineation of clinical outcomes of pediatric NAFLD will require long term follow up of affected children into adulthood

Pediatric NAFLD

Screening

Upper Limit for ALT?

- Regional laboratories use local population for norms
 - Do not exclude overweight/obese or other causes of liver disease
 - Median ULN at children's hospitals 53 U/L (range 30-90)
- 95 percentile for ALT in healthy weight, metabolically normal, liver disease free, NHANES adolescent group (12-17 yrs)

ALT 25.8 U/L for BOYS ALT 22.1 U/L for GIRLS

Limitations of ALT

- Poor correlation with histology
 - Some studies suggest AST, GGT better correlated with fibrosis
 - ALT changes even with placebo!
- Fluctuations over time
- Cannot always differentiate between

NASH

NAFL

Ultrasound

- Pros:
 - Non-invasive
- Cons
 - Low sensitivity/specificity particularly lower degrees of steatosis
 - (not recommended for screening in NASPGHAN Guidelines)
 - Cannot differentiate between

NAFL

Advanced Imaging

- Newer imaging techniques
 - Ultrasound based
 - Shear wave
 - Radiofrequency impulse
 - Magnetic Resonance based
 - Elastography
 - Spectroscopy
- Not widely available

- Screening should be considered between 9 and 11 years for:
 - Children (BMI ≥95th percentile)
 - Children (BMI ≥ 85th and 94th percentile) with additional risk factors
 - Central adiposity, insulin resistance, prediabetes or diabetes, dyslipidemia, sleep apnea, or family history of NAFLD/NASH

Continued

 Earlier screening can be considered in younger patients with risk factors such as severe obesity, family history of NAFLD/NASH, or hypopituitarism

 Consider screening of siblings and parents of children with NAFLD if they have known risk factors for NAFLD

- Best test currently- ALT
 - Sex-specific upper limits of normal in children (22 U/L for girls and 26 U/L for boys)
 - Persistently (>3 months) elevated ALT more than twice the upper limit of normal should be evaluated for NAFLD
 - ALT of >80 U/L warrants increased clinical concern and timely evaluation

- Clinically available routine ultrasound is not recommended as a screening test for NAFLD
- Follow up screening recommended
 - Repeating ALT every 2 to 3 years if risk factors remain unchanged
 - Consider repeating screening sooner if clinical risk factors of NAFLD increase

Pediatric NAFLD

Diagnosis

Diagnosis of Exclusion

Other causes of hepatic steatosis need to be excluded

Genetic/Metabolic disorders	Medications	Dietary causes	Infections
LAL-D	Corticosteroids	Alcohol	Hepatitis C (genotype 3)
FACD, citrin deficiency	Amiodarone	Rapid weight loss e.g., surgical	
Wilson's disease	Methotrexate	Parenteral nutrition	
Lipodystrophies	Antipsychotics	Protein-energy malnutrition	
Abeta-/hypobeta- liproproteinemia	Antidepressants		
Uncontrolled diabetes	HAART		

How to Diagnose?

Portal Predominant NASH in Many Pediatric Patients, Rarely in Adults

Assessment of Steatosis

- Liver biopsy
 - Traditionally used to quantify steatosis

Steatosis in >5% of hepatocytes is abnormal

- NAFLD Activity Score (NAS)
 - Research: steatosis grading 0-3

Imaging

- Investigative ultrasonography
- MR-based technologies

Cost and availability limit their use

Diagnosing NASH

Cannot distinguish NAFL from NASH

- Obesity severity
- Degree of metabolic dysregulatin
- Bloodwork (ALT, keratin 18, etc.)
 - NASH more common in those with ALT>80 U/L
 - Panhypopituitarism, T2DM associated with NASH

Can confirm NASH

Liver biopsy

- >2 cm length likelihood of accurate classification
- NAS score (research) used to rate severity

Singh S et al. *Dig Dis Sci* 2008;53:279.

Fitzpatrick E et al. *J Pediatr Gastroenterol Nutr* 2010;(4):500-6.

Mandelia C et al. *J Pediatr Gastroenterol Nutr* 2016 Aug;63(2):181-7

Schwimmer JB et al. *Aliment Pharmacol Ther* 2013;38:1267–77.

Kleiner DE et al. *Hepatol* 2005;41(6):1313-21.

Liver Biopsy Considerations

- Safe in children, even if overweight
 - Extreme obesity: consider involving interventional radiology
- Optimal timing of biopsy
 - Not established
 - Shared decision with family
 - Biopsy can be helpful to identify:
 - Other liver diseases
 - Advanced NAFLD

May trigger pursuit of more intensive treatment strategies.

Determining the Presence of Fibrosis - Biomarkers

Parameter	ALT for >F2
Pediatric NAFLD fibrosis score	0.74
Pediatric NAFLD fibrosis score	0.62
Enhanced liver fibrosis	0.96
PNFI + ELF	0.94 any fibrosis

- ALT≥ 80 predicts advanced fibrosis (F3/F4)
 –sensitivity 76%; specificity 59%
- AST/PLT; hyaluronic acid; other biomarkers: remain to be validated in children

Benefits and Limitations of Each Diagnostic Approach

Liver Biopsy

- **☑** Differentiates NAFL from NASH
- ☑ Excludes other liver diseases
- ✓ Clinical reference for diagnosis

Serum Biomarkers

- ✓ Non-invasive
- ✓ Cheap

Imaging Modalities

- ✓ Non-invasive
- ✓ Imaging of entire liver
- ☑ Can exclude certain conditions
- ✓ Cost varies

Liver Biopsy

- **☑** Invasive
- **☑** Samples a small fraction of the liver

Serum Biomarkers

- ✓ Often have low sensitivity/specificity
- ✓ Some remain to be validated

Imaging Modalities

- ☑ U/S has low sensitivity/specificity
- CT exposes to radiation
- **☑** MRI/MRS: diagnostic cutoffs unclear

Determining the Presence of Fibrosis - Imaging

- Pediatric literature limited
 - Small sample size
 - Few patients with advanced fibrosis
- Transient Elastography
 - ROC = 0.79-1.00 to predict ≥F2
- Magnetic Resonance Elastography
 - ROC = 0.92
 - Scanner and reader dependent

Further validation studies are required

Recommendations

- Exclude other liver diseases when evaluating a patient with suspected NAFLD
- Consider liver biopsy in children at risk of NASH and/ or advanced fibrosis
- Ultrasound is not recommended to determine or quantify steatosis due to poor sensitivity/specificity
- CT not recommended for quantification of steatosis due to exposure to radiation

Pediatric NAFLD

Treatment

Goals of Treatment

1. Regression of NAFLD

Defined as decrease in steatosis, inflammation, or fibrosis

2. Resolution of NASH

These goals are defined and determined by liver histology

Liver Histology

 Assessment of change in fibrosis over time is reasonable as a treatment outcome in children over longer time periods (≥ 2 years) and currently requires a liver biopsy for staging

Surrogate Markers of Treatment Response

ALT

 Decrease in ALT is associated with improvements in NAFLD, but how much of a change is meaningful for a given individual is still to be determined

Surrogate Markers: Imaging

- Ultrasound
 - Not reliable
- MRI
 - Promising
 - Needs validation as a measure of change

Other Treatment Goals

- Decrease in adiposity
- Improvement
 - Dyslipidemia
 - Insulin resistance
 - Blood pressure

Potential Treatment Options

- Lifestyle
- Dietary supplements
- Medications
- Surgery

Lifestyle Modifications

 Lifestyle modifications to improve diet and increase physical activity are 1st-line treatments for all children with NAFLD

Lifestyle Targets

- Avoid sugar-sweetened beverages
- Healthy, well-balanced diet
- Moderate to vigorous exercise
- Limit screen time to < 2 hours per day

Medications for NAFLD

- No currently available medications or supplements are recommended to treat NAFLD
- Bariatric surgery may be considered for selected adolescents with
 - BMI ≥ 35 kg/m², who have
 - non-cirrhotic NAFLD
 - Absence of other serious comorbidities

Pediatric NAFLD

Extrahepatic Associations

Cardiovascular Disease (CVD)

- Adult studies:
 - CVD is the leading cause of mortality in patients with NAFLD
 - NAFLD associated with CVD independent of BMI and other metabolic syndrome components

Pediatric Data

- Dyslipidemia is common
 - Suggestive of insulin resistance (♠TG, ♥HDL)

 Early atherosclerosis seen in adolescents with NAFLD using surrogate markers and/or autopsies

Impact of Treatment

- Treating dyslipidemia in the context of NAFLD:
 - No data on hepatic impact of dyslipidemia treatment
- Treating NAFLD impact on dyslipidemia:
 - TONIC: NASH resolution associated with improvement in cholesterol, not TG
 - DHA superior to placebo for TG improvement
 - Low fructose diet improved oxidized LDL

Screening for Dyslipidemia

As per published guidelines:

2-8 years old

- If risk factors exist
- If family history of dyslipidemia/CVD

9-11 years old

Universal screening

Hypertension

 Increased risk of hypertension in children with NAFLD and obesity vs. obesity alone

 Treatment recommendations as per guidelines for overweight children

CVD Recommendations

- Children with NAFLD:
 - Should be screened for dyslipidemia at diagnosis and periodically, as per published guidelines
 - Should have their blood pressure monitored

Insulin Resistance and Diabetes Mellitus

- Increased risk of NASH if NAFLD with:
 - Insulin resistance (OR: 1.8)
 - Diabetes mellitus (OR: 2.6)
- Correlation between hepatic fat and prevalence of insulin resistance
- Baseline fat content predicts long-term (~2y) insulin sensitivity

Diabetes Recommendations

- Screen annually or sooner if clinical concern
- Screen using:
 - Fasting glucose
 - HgbA1c
 - OGTT if above suggest pre-diabetes

Obstructive Sleep Apnea (OSA)

- OSA affects > 50% of children with NAFLD
- Independent of BMI and metabolic syndrome,
 OSA is associated with:
 - NASH
 - Advanced fibrosis
- Increased % of time with SaO₂≤90% relates to:
 - Hepatic necroinflammation and steatosis
 - Elevated transaminase levels

Pediatric NAFLD

Unanswered Questions and Research Priorities

Unanswered Questions and Research Priorities

- Natural history of NAFLD starting in childhood
- Risk factors in childhood NAFLD that predict progression to cirrhosis and HCC
- Non invasive diagnostics
- Longitudinal studies of biomarkers and imaging

Unanswered Questions and Research Priorities

- Treatment questions:
 - Role of dietary interventions
 - Type and duration of exercise
 - Validation of promising therapeutics
 - Role of weight loss surgery
- Cost effectiveness and public health questions:
 - Effective prevention strategies
 - Cost effectiveness of screening, diagnosis and follow up

Future Directions

- Improvement in understanding of the disease will lead to improved outcomes
- As pediatricians, prevention is a priority but not yet a focus for funding
- Collaborative efforts exist nationally and internationally
 - NASPGHAN NAFLD Scientific Advisory Board
 - The Liver Forum
 - NIH sponsored NASH Clinical Research Network
 - Industry supported Natural History studies
- These are all opportunities to get involved!

