Protein Digestion and Absorption

Christine Waasdorp Hurtado, MD, MSCS, FAAP Gregg Kobak, MD

University of Colorado School of Medicine Children's Hospital Colorado

Reviewed by: Michael Narkewicz, MD Jeremiah Levine, MD

NASPGHAN Physiology Education Series

Series Editors:

Christine Waasdorp Hurtado, MD, MSCS, FAAP

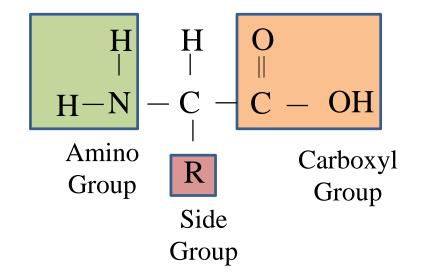
Christine.Waasdorp@childrenscolorado.org

Daniel Kamin, MD

Daniel.Kamin@childrens.harvard.edu

Protein Digestion Objectives

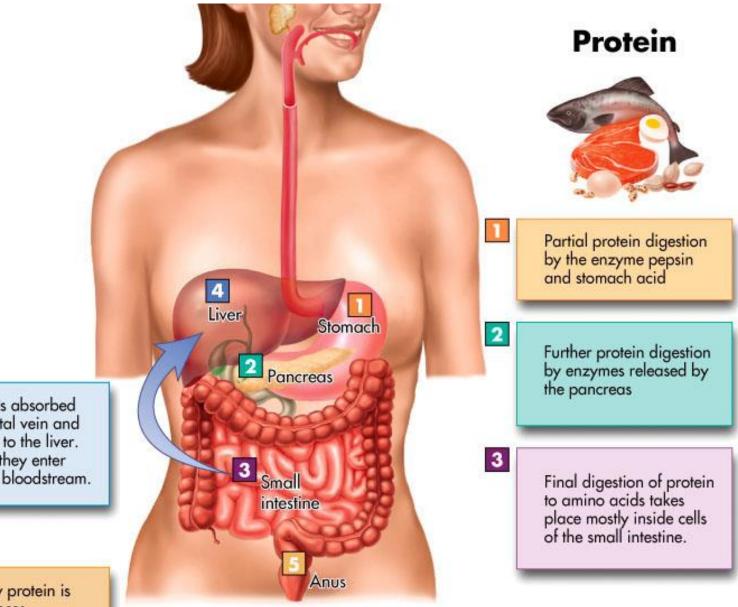
- Understand the structure of protein
- Understand protein digestion and absorption
- Discuss clinical implications


What is Protein?

- Proteins are sequences of amino acids
- There are 20 amino acids
 - 9 are essential amino acids
 - phenylalanine, valine, threonine, tryptophan, isoleucine, methionine, histidine, leucine, lysine
 - 11 are non-essential
 - 4 amino acids are considered conditionally essential
 - arginine, tyrosine, glutamine, and cysteine (glycine, proline and serine sometimes considered conditionally essential)
- Require 0.75g/kg body weight

Increased requirements in infants and illness

Amino Acids: Structure


- Consist of a central carbon atom bonded to: a hydrogen, a carboxylic acid, an amino group, and an additional side group that is unique to each amino acid
- The side group creates unique characteristics for each amino acid so they differ in: shape, size, composition, electrical charge, and pH

Amino Acids: Structure

- Amino acids (AA) are linked to form proteins
- Amino acids are joined by PEPTIDE bonds
 - Dipeptide 2 amino acids
 - Tripeptide 3 amino acids
 - Oligopeptides 4-10 amino acids
 - Polypeptide more than 10 amino acids
- Most proteins in the body and diet are long polypeptides (100s of AA)

Overview of Protein Digestion

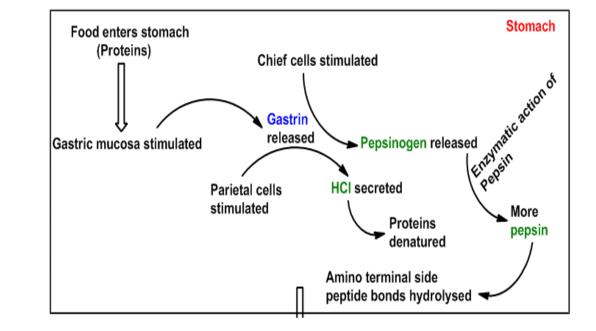
Amino acids absorbed into the portal vein and transported to the liver. From there they enter the general bloodstream.

Little dietary protein is present in feces.

Image from Carolyn Holocroft

Protein Digestion

- Whole proteins are not absorbed
 - Too large to pass through intact cell membranes
- They must be digested into di- and tri-peptides or individual AAs prior to absorption
 - Additional digestion occurs in the cytosol
- Structures of protein are more diverse than carbohydrates


Require broad spectrum peptidases and transporters

Protein Digestion - Mouth

• No digestion occurs in the oral cavity or esophagus

Protein Digestion - Stomach

- Gastric phase
 - Gastrin released from G cells
 - Stretch receptors stimulate release
 - AA in stomach stimulate release

Parietal cells secrete HCl

- Gastrin stimulates Parietal cells to secrete HCl
- HCl denatures proteins 4⁰, 3⁰, and 2⁰ structures
- Converts pepsinogen to pepsin

Protein Digestion - Stomach

- Chief cells secrete Pepsinogen

- Stimulated by cephalic vagal input
- Secretion enhanced
 - Acetylcholine, CCK and gastrin
- Pepsinogen is auto-activated at pH <4 to Pepsin
 - Cleavage of an N-terminal peptide
 - Pepsin can break down collagen
- Pepsin cleaves proteins at large aliphatic or aromatic side groups
 - Completes ~ 10-20% of digestion
- Pepsin is inactivated at pH >4.5
 - Protects intestinal tissues
- Protein leaves stomach as mix of insoluble protein, soluble protein, peptides and amino acids

Protein Digestion - Intestines

- Intestinal phase
 Overview
 - Majority of proteolysis occurs in the intestines
 - 70% of proteins are converted to oligopeptides
 - Still require terminal action at enterocyte membrane

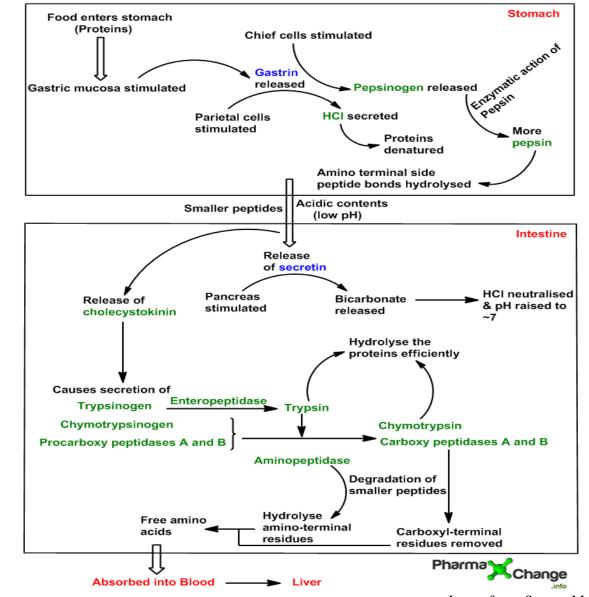


Image from: Sweety Mehta

Protein Digestion – Small Intestine

- Majority of protein digestion occurs within the intestine due to the action of pancreatic proteases.
 - Proteases break down polypeptides into smaller peptides and AA
- Two main forms of pancreatic enzymes
 - Endopeptidase cleaves internal bonds
 - Ectopeptidase cleaves AA at C-terminus

Protein Digestion - Intestine

- Endopeptidase: hydrolyze internal peptide bonds:
 - -Trypsin (Pancreas)
 - Chymotrypsin (Pancreas)
 - Elastase (Pancreas)
 - Pepsin (Gastric)
- Ectopeptidase: hydrolyzes external peptide bonds:
 - Carboxypeptidase A (Pancreas)
 - Carboxypeptidase B (Pancreas)
 - Aminopeptidase (Pancreas, Brush Border, Cytoplasm)

Pancreatic Proteases

- Pancreatic enzymes stored in acinar cells as pro-enzymes (zymogens)
 - − Trypsinogen → Trypsin
 - Chymotrypsinogen Chymotrypsin
 - Procarboxypeptidase A and B \longrightarrow Carboxypeptidase A and B
 - Proelastase \longrightarrow Elastase

Protein Digestion - Pancreas

• Zymogens are converted to active form in the intestine

– Trypsinogen

Enterokinase/ Trypsin

Trypsin

- Endopeptidase
 - Cleaves on carbonyl side of Lysine & Arginine
- Chymotrypsinogen <u>Trypsin</u> Chymotrypsin
 - Endopeptidase
 - Cleaves carboxy terminal tyrosine, phenylalanine, tryptophan, methionine, and leucine
- Procarboxypeptidase A/B <u>Trypsin</u> Carboxypeptidase
 - Ectopeptidase
 - Removes carboxy terminal residues

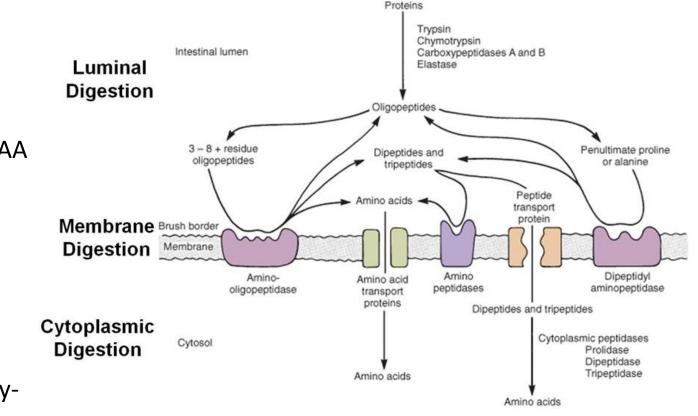
Protein Digestion - Intestine

- Large peptides from gastric proteolysis are sequentially cleaved in the small intestine
 - Endopeptidases cleave in the middle of peptide chains
 - Trypsin
 - Chymotrypsin
 - Elastase
 - Yield shorter chains with neutral or basic AA at C-terminus
 - Carboxypeptidase A and Carboxypeptidase B then act
 - Carboxypeptidase A act on neutral AA
 - Carboxypeptidase B acts on basic AA

Protein Digestion - Trypsin Inhibitors

- Small proteins or peptides
- Present in plants, organs, and fluids
 - Soybeans, peas, beans, wheat
 - Pancreas, colostrum
- Decrease activity of trypsin

- Decrease all other proteases activated by trypsin


• Inactivated by heat

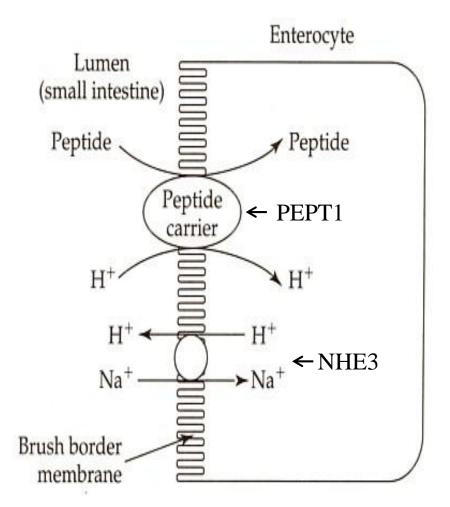
Protein Digestion - Mucosal

- Intraluminal degradation of proteins by gastric and pancreatic enzymes is incomplete
- Brush border hydrolysis necessary
- Diversity of substrates requires diverse hydrolyases
 - Membrane bound on villi
 - Not present in crypt cells
 - Produce free AA and small peptides

Protein Digestion - Mucosal

- Small intestine
- (brush border)
 - Aminopeptidases
 - Cleave at N-terminal AA
 - Dipeptidases
 - Cleave dipeptides
 - Carboxypeptidases
 - Cleaves at the carboxyterminal

Protein Digestion - Cytosol


- The vast majority of di- and tri-peptides are digested into amino acids by cytoplasmic peptidases.
- Peptidases
 - Cleave N-terminal AAs

Protein Absorption Overview

- Most protein absorption takes place in the duodenum and jejunum
 - Tripeptides, Dipeptides and AA are absorbed
 - There is minimal absorption of peptides longer than three amino acids
- Most AA are absorbed into the bloodstream, but some remain in the enterocytes and are used to support the cells
- >99% of protein enters the bloodstream as amino acids

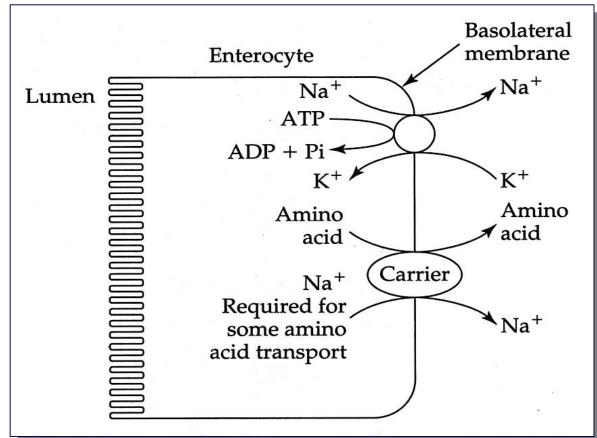
Protein Absorption - Peptides

- Essentially no absorption of peptides longer than three amino acids
- Di- and tri-peptides are more rapidly absorbed than free amino acids due to PEPT1
 - Active transporter PEPT1
 - Coupled to sodium-hydrogen exchanger (NHE3)
 - Accommodates various sizes and charges
- Di- and tri-peptides are digested into amino acids by cytoplasmic peptidases

Amino Acid Absorption/Transport - Enterocyte

Transporter	Substrate	Ion dependence	Disease
SLC1A1	Anionic amino acids	Na+, K+, H+	Dicarboxylic aciduria
SLC1A5	Ala,Ser,Cys,Gln,Asn	Na ⁺	
SLC6A6	Taurine	Na⁺, Cl⁻	
SLC6A14	Neutral and cationic amino acids	Na⁺, Cl⁻	
SLC6A19	Neutral amino acids	Na ⁺	Hartnup
SLC6A20	Imino acids	Na⁺, Cl⁻	
SLC7A9/SLC3A1# # - heterodimer	Neutral and cationic amino acids, cysteine	None	Cystinuria
SLC36A1	Small neutral amino acids	H⁺	

Protein Absorption - Amino Acids


- The Na⁺ dependent transporters mechanism
 - Transporter binds amino acids only after binding sodium
 - Conformational change occurs dumping Na⁺ and the amino acid into the cytoplasm
 - The transporter then re-orients back to its original form allow transport of the next amino acid
 - Absorption of amino acids is dependent on the electrochemical gradient of Na⁺ across the epithelium

Protein Absorption - Amino Acids

- There are 7 transporters of free amino acids in the brush border
- Mechanism varies
 - Na⁺-independent carriers (2)
 - Proton co-transport
 - Facilitated diffusion
 - Na⁺-dependent (5)
 - Carriers are coupled to Na+ concentration gradient

Protein Transport - Enterocyte

- The basolateral membrane of the enterocyte contains transporters which export amino acids from the cell into the blood
 - Diffusion
 - Both Na+ dependent and independent carriers
- Only free amino acids absorbed into blood

Protein Absorption - Intact Proteins

- Absorption of intact proteins occurs rarely
- Shortly after birth, neonates can absorb intact proteins
- Very few proteins can get through the gauntlet of soluble (lumen) and membrane-bound proteases intact
- "Normal" enterocytes do not have the transporters needed to carry proteins across the plasma membrane and they can't permeate tight junctions

Clinical Correlation

- Hartnup Disease
 - Abnormal transport of neutral AA (ie tryptophan)
 - Mutation in SCL6A19 transporter
 - Clinical variability
 - No symptoms to rash or neurologic symptoms
 - Due to lack of nicotinamide (tryptophan metabolite)
 - Diagnosis
 - High levels of neutral AA in the urine
 - Treatment supplement with nicotinamide

Clinical Correlation

- Cystinuria
 - Decreased intestinal absorption of dibasic AA (lysine, arginine, cystine)
 - Defect in SLC3A1 transporter
 - Presentation
 - Kidney stones accounts for 10%
 - Diagnosis
 - Elevated urine cystine
 - Treatment
 - Hydration
 - Limit dietary sodium and methionine

Protein Digestion - Summary

- Proteins are digested into amino acids and di and tri peptides in the stomach and small intestine
 - The vast majority of digestion is due to pancreatic enzymes
 - Enterokinase plays a key role in pancreatic enzyme activation
 - A small percentage of digestion occurs following absorption into the cytosol
- Absorption is complex
 - Several different transporters
 - Several different mechanisms

Review Questions

- There are 9 essential amino acids. Please list them –
- \bullet

Review Question

- The intestinal phase is responsible for the bulk of protein digestion. What enzymes are active in the intestines?
 - HCL and Pepsinogen
 - Endopeptidase and Ectopeptidase
 - Pepsin and Trypsin
 - Trypsin, Chymotrypsin and Proelastase

Questions?

Please send any questions or comments to

Christine.Waasdorp@childrenscolorado.orgDaniel.Kamin@childrens.harvard.edu