NASPGHAN Physiology Lecture Series

GI Physiology Module: Absorption of Water and Ions

Jason Soden, MD

Reviewers:

George Fuchs MD: UAMS College of Medicine / Arkansas Children's Hospital Wayne Lencer MD: Harvard Medical School / Boston Children's Hospital

Series Editors: Daniel Kamin, MD and Christine Waasdorp Hurtado, MD

Objectives:

- 1. Understand the mechanisms of intestinal transport of ions
- 2. Know the location of transport and secretion of ions
- 3. Understand the absorption of vitamins and minerals
- 4. Understand the phenomenon of changes in nutrient absorption with luminal nutrient concentration
- 5. Mechanisms of diarrhea
- 6. Identify signs and symptoms of excess vitamin and mineral absorption and signs and symptoms of deficiency
- I. Background: Fluid and Electrolyte Balance in the GI Tract
 - a. Regulation of fluid transport in gut is critical for normal intestinal function
 - b. Water follows the osmotic gradient set by electrolyte transit
 - c. The regulation of electrolyte balance is therefore a key principal to understanding intestinal fluid balance in health and disease
 - i. In healthy state, only 100mL of fluid exits the gut (via stool) per day
- II. Intestinal Epithelial cells function as gatekeepers for fluid and ion transit
 - a. Tight junctions: restrict passive flow of solutes.
 - b. Paracellular transport of water and electrolytes across tight junctions can occur but most follow electrochemical gradient
 - c. Transcellular transport proteins: allow transport of molecules and waters across epithelial barrier, often via active transport against electrochemical gradient
 - i. Subject to transcriptional and posttranscriptional regulation
 - ii. Mechanistic examples:
 - 1. Primary Active Transport: Na-ATPase
 - 2. Secondary Active Transport: Na-GLUC cotransporter
 - 3. Facilitated Diffusion: Glut-5 (fructose transporter)

- III. Anatomic Considerations
 - a. Based on villi (absorptive) and crypts (secretory), simultaneous absorption and secretions occurs at all levels of the intestine
 - i. Absorption primarily depends on molecular cotransport with sodium
 - ii. Secretion primarily follows chloride and bicarbonate
 - b. Locational specialization occurs within the gut

- IV. Key examples of Cellular Transport Proteins
 - a. Na, K ATPase

Adapted from: Guandalini "Acute Diarrhea" Pediatric Gastrointestinal Disease. 4th Ed 2004

b. Na-coupled Transport (eg: Sodium-Glucose cotransporter)

Adapted from: Guandalini "Acute Diarrhea" Pediatric Gastrointestinal Disease. 4th Ed 2004

c. NaCl Co-transport

Adapted from: Guandalini "Acute Diarrhea" Pediatric Gastrointestinal Disease. 4th Ed 2004

d. Chloride secretion

e. Ultimately, water follows the NaCl gradient

Adapted from: Guandalini "Acute Diarrhea" Pediatric Gastrointestinal Disease. 4th Ed 2004

- V. Absorption and Secretion in Health versus Diarrheal States
 - a. In healthy state, absorption (villus) > secretion (crypts)
 - b. In diarrheal state, chloride secretion (crypt) may be higher than villous NaCl absorption
 - i. The pathophysiology of individual diarrheal disease is dependent on how the process affects ion absorption or secretion
 - c. Basic clinical mechanisms:
 - i. Osmotic diarrhea: Malabsorption of solute (eg, carbohydrate / lactose) from small intestine drives fluid losses in colon
 - ii. Secretory Diarrhea: Electrolyte secretion (eg, chloride secretion from crypts) drives small intestinal fluid losses
 - d. Repetitive molecular pathways exist in various infectious diarrheal states

Signal/pathway	Examples	Mechanism			
CAMP	Cholera toxin Heat labile E Coli (ETEC)	Blocks <u>NaCl</u> absorption Stimulates anion secretion			
CGMP	Heat stable E Coli (EAEC) <u>Klebsiella</u>	Blocks <u>NaCl</u> absorption Stimulate anion secretion			
Ca++ / protein <u>kinase</u> C	C <u>Difficile enterotoxin</u>				
Pore forming toxin	Staph <u>Aureus</u> α-toxin C. <u>perfringes</u>	Pore formation along brush border membrane			
Toxin blocking protein synthesis	EHEC Shiga toxin <u>Shigella</u> Shiga toxin	A1 subunit of toxin binds ribosome and interrupts protein synthesis			
Toxin inducing protein synthesis	Staph toxin A EAggEC toxin	Upregulate proinflammatory cytokines			
Toxin affecting <u>cytoskeletan</u>	Clostridium species				
Adapted from: Fasano: "Bacterial Infections" Pediatric Gastrointestinal Disease. 4th Ed 2004					

i. Example: Cholera

Adapted from: Barrett KE: Gastrointestinal Physiology. www.accessmedicine.com

- VI. Mineral and Vitamin Absorption
 - a. Iron
 - i. Ferrous iron is absorbed in proximal small intestine
 - ii. Ferrous iron is converted to ferric iron, which is coupled with transferrin for transport
 - iii. The liver plays a major role in regulation of iron transport

Source: Murray RK, Bender DA, Botham KM, Kennelly PJ, Rodwell VW, Weil PA: Harper's Illustrated Biochemistry, 28th Edition: http://www.accessmedicine.com

- b. Calcium
 - i. Absorbed in duodenum
 - ii. Regulated by 1,25 hydroxy vitamin D, which regulates the apical, intracellular, and basolateral transport mechanisms
- c. Magnesium
 - i. Absorbed throughout GI tract, and regulation of absorption is dependent on dietary intake
- d. Water Soluble Vitamins
 - i. B vitamins and vitamin C are easily taken up by cells, and are generally not stored in tissue
 - ii. Vitamin B12:
 - 1. Requires intrinsic factor for absorption
 - 2. Partially stored in liver
- e. Fat Soluble Vitamins
 - i. Digestion, absorption, and transport follows dietary fat
 - ii. Stored in hepatocytes and adipocytes
- f. Vitamin and mineral excess and deficiency states

Micronutrient	Pathophysiology	syndrome	syndrome	Laboratory evaluation
Minerals and trace elements	1			
Calcium	Fat malabsorption	Paresthesias, tetany, bone demineralization	*GI, GU, bone complaints	Serum Ca, PTH, DEXA scan
Magnesium	Fat malabsorption and high GI fluid losses	Weakness, cardiac, CNS	*Weakness, cardiac	Serum Mg
Zinc	GI fluid losses	Poor growth, skin, hair, diarrhea	*Vomiting, headache, diarrhea, Cu deficiency	Serum Zn, low alkaline phosphatase
Copper	Overload more common in cholestasis	*Hemolytic anemia, neutropenia	Hepatic overload, neuropsychiatric	Serum Cu
Manganese	Overload more common in cholestasis	*Poor growth, ataxia, skeletal	Neurotoxicity	Serum Mn
Iron	Absorbed proximally; not routinely in TPN	Microcytic anemia, irritability	Hepatotoxicity, GI bleeding, vomiting	Ferritin, TIBC, Iron Binding Cap, Hgb, HCT, peripheral smear
Selenium	Absorbed throughout small bowel	Myopathy, cardiomyopathy	*Thyroid enlargement	Serum selenium
Fat-soluble vitamins				
Α	Fat malabsorption, cholestasis	Xerophthalmia, blindness	Increased ICP, hepatitis, vomiting	Vitamin A: retinol binding protein ratio
D	Fat malabsorption, cholestasis	Hypocalcemia, hypophosphatemia, rickets	Emesis, renal impairment	25-OH vitamin D
E	Fat malabsorption, cholestasis	Myopathy, neuropathy, ataxia, hemolytic anemia	coagulopathy	Vitamin E: total serum lipid ratio
K	Fat malabsorption, cholestasis	Bleeding	Hemolytic anemia	Prothrombin time, PIVKA assay
Water-soluble vitamins				
B12	Gastric or ileal resection	Megaloblastic anemia, CNS including ataxia	None known	Serum B12, methylmalonic acid, homocysteine
Folate	Absorbed proximally	Anemia, thrombocytopenia, stomatitis, glossosis	None known	Serum Folate